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Abstract 

With rapid advances in meat science in recent decades, changes in meat quality during the 

pre-slaughter phase of muscle growth and post-slaughter process from muscle to meat have 

been investigated. Commonly used techniques have evolved from early physicochemical 

indicators such as meat color, tenderness, water holding capacity, flavor, and pH to various 

omic tools such as genomics, transcriptomics, proteomics, and metabolomics to explore 

fundamental molecular mechanisms and screen biomarkers related to meat quality and taste 

characteristics. This review highlights application of omics and integrated multi-omics in meat 

quality and taste characteristics studies. It also discusses challenges and future perspectives of 

multi-omics technology to improve meat quality and taste. Consequently, multi-omics 

techniques can elucidate the molecular mechanisms responsible for changes of meat quality at 

transcriptome, proteome, and metabolome levels. In addition, the application of multi-omics 

technology has great potential for exploring and identifying biomarkers for meat quality and 

quality control that can make it easier to optimize production processes in the meat industry. 
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Introduction 

Meat and meat products are popular among consumers because they are both tasty and 

nutritious. The quality and taste of meat are results of various complex factors, with color, 

water-holding capacity (WHC), tenderness, and flavor being their primary determinants (Joo 

et al., 2013). In general, meat quality and taste characteristics vary depending on the livestock 

species, breed, gender and slaughter period etc. Even the same breed can have different quality 

and taste characteristics depending on individual muscles (Kumar et al., 2021; Lee et al., 2023b; 

Won et al., 2023). Feeding management (Hossain et al., 2023; Kim et al., 2023), slaughter 

weight, slaughtering processes (Hwang et al., 2022; Oh et al., 2022), and processing methods 

(Ismail et al., 2022; Lee et al., 2023a) can also influence meat quality and taste characteristics. 

Therefore, exploring how primary determinants of meat quality change according to these 

factors and what mechanisms are involved can increase the possibility of high-quality meat 

production. Although there is an urgent need to understand the molecular mechanisms 

responsible for biochemical or biological changes of meat quality, methods for measuring and 

evaluating these biochemical and/or biological changes objectively are lacking unfortunately. 

Hence, it is important to understand the technical principle of approaches used to analyze the 

quality and taste of meat, to improve the accuracy to better reflect changes of quality and taste, 

and to identify the molecular mechanisms responsible for high-quality and delicious meat 

(Gagaoua et al., 2021; Kim et al., 2023).  

Recent advances in high-throughput sequencing technology and high-resolution mass 

spectrometry are enabling a comprehensive and systematic understanding of meat quality and 

taste characteristics at the molecular level through intensive multi-omics studies (Ramanathan 

et al., 2020). Commonly used omics techniques related to the quality and taste of meat are 

mainly genomics, including transcriptomics, proteomics, and metabolomics. Multi-omics 



 

 

techniques integrating these individual omics are very useful for exploring related genes, 

proteins, and metabolites that can improve meat quality and taste (Ramanathan et al., 2020). 

Differentially expressed biomolecules identified using omics can not only be used as 

biomarkers to predict meat quality, but also can be applied to find interactions at the molecular 

level. For these reasons, a number of recent studies using multi-omics technologies have 

successfully explored impacts of various physiological processes on meat quality during meat 

production (Kim and Kim, 2021; Purslow et al., 2021; Wu et al., 2020). Moreover, multi-omics 

technologies have been used to investigate biomarkers and biological processes related to meat 

quality. However, there is still a lack of reviews on multi-omics technologies in relation to meat 

quality and taste characteristics.  

In this respect, this review introduces technological principles of genomics, transcriptomics, 

proteomics, metabolomics, and multi-omics in order. Firstly, overview technology of genomics 

related to meat quality is introduced, focusing on the structure and function of genes that can 

affect meat quality traits. Next, technical principles of transcriptomics and its application in 

meat research are introduced, focusing on effects of genes of various breeds and feeding 

management on fat deposition and muscle fiber development. Principles of proteomics 

technologies and related application in meat with effects of pre- and post-slaughter factors on 

meat at the proteomic level are then summarized. In addition, major principles of metabolomics 

technologies and their applications in meat are reviewed in relation to metabolites that can 

cause changes in flavor and tenderness are summarized. Finally, this paper introduces 

applications of multi-omics in meat research, focusing on integrated methodological studies of 

biological systems. Future perspectives of multi-omics are also discussed. 

 

  



 

 

Genomics approaches to improve meat quality 

Genomics is the study of all genes of animals or individuals. Genomics analysis provides 

useful information about intragenomic interactions in the genome. Genomics can be used to 

identify particular markers, genomic regions, candidate genes associated with economically 

significant trait and evaluate an individual's breeding value (Goh et al., 2018; Raschia et al., 

2018; Kim et al., 2023; Lee et al., 2023b; Won et al., 2023). It can also be used to study the 

structure and function of genes that affect meat quality traits. The development of sequencing 

tools has enabled the expansion of functional or expressive genomics as knowledge about 

genomes builds up. Advancement in functional genomics research is enabled by the ability to 

simultaneously analyze hundreds or thousands of genetic polymorphisms (SNPs with chips), 

transcripts (transcriptomics), proteins (proteomics), and metabolites (metabolomics) with 

dedicated arrays or specific tools. Over the past few decades, these tools have been 

implemented to identify genes, proteins, and/or metabolites that are related to meat quality 

traits or taste characteristics beyond the production of meat (D'Alessandro et al., 2012; Kim 

and Kim, 2021; Picard et al., 2015). 

The ultimate objective of genomics for meat science and industry is to identify meat quality 

biomarkers that can be quantified in the early postmortem period of carcass or alive animals in 

order to produce and distribute a good quality meat during meat processing or distribution. 

Quantification of these biomarkers can predict meat quality from birth in the case of single-

nucleotide polymorphism (SNP) biomarkers. Other biomarkers such as genes, proteins, and 

metabolites can be used to predict the quality level of meat from livestock growth to slaughter. 

Although these genomic evaluations are typically expensive as they are performed invasively 

within days of slaughter or even in sufficiently aged meat samples, they provide substantial 

and valuable information. For example, the use of expression biomarkers can allow us to 



 

 

understand interactions between genetic and environmental factors that contribute to the 

development of complex phenotypes such as meat color, WHC, tenderness, marbling, umami 

intensity, and so on. This knowledge can be used to produce meat of better quality and enhanced 

its palatability. Indeed, over the past few years, these technologies have been implemented in 

most meat production systems (Hollung et al., 2007; Lim et al., 2009; Park et al., 2020; Picard 

et al., 2015).  

A practical application of genomics is to develop biomarkers for meat quality traits by 

sampling from either live animals or postmortem carcasses. One of the representative and 

practical implications is the identification of RYR1 gene mutation (Fujii et al. 1991) and 

associated effects in the development of PSE (pale, soft, exudative) condition. However, 

studying one gene may not provide meaningful information because each meat quality trait is 

polygenic and influenced by various genes. One of the representative methods used in 

genomics is identifying variations in DNA sequences between different animals followed by 

determination of how they correlate with each meat quality trait. The most common type of 

genetic variation is SNP, which can help us predict quality variations such as muscle pH, 

tenderness, marbling, and so on (Cho et al., 2015; Kim and Kim, 2021; Lim et al., 2009).  

Besides successful implementation of the human genome project, livestock has also paved 

the way to sequence the entire genome of a species. Genome-wide association studies of 

livestock have enabled identification of genes related to meat quality traits (Park et al., 2020; 

Cho et al., 2023). Each study can look at thousands of SNPs at the same time and pinpoint 

genes that can contribute to a specific meat quality defect. These genomic analyses involve 

enzyme digestion to cut DNA extracted from meat samples into smaller strands. These small 

strands are later incubated with primers to promote binding to complementary bases. If ChIP-

sequencing (chromatin immunoprecipitation) is used, a large amount of data can be generated 



 

 

as multiple genes can be identified in a single run. Computational software can be used to 

analyze such big data of gene sequences to identify several genes related to a meat quality trait 

(Goh et al., 2018). However, some genes identified by ChIP-sequencing might not be 

functional. Hence, interest in mRNA quantification is recently increasing. In other words, many 

studies are being conducted to quantify mRNA (transcriptomics) to more accurately understand 

changes in meat quality and palatability of meat (Cho et al, 2023; Kim and Kim, 2021; Kim et 

al., 2023; Won et al., 2023). 

 

Transcriptomics techniques and application for meat quality  

Transcriptomics intensively investigates the transcription and regulation of mRNA and 

ncRNA in cells or tissues under specific conditions. It is known that ncRNA regulates initiation 

and post-transcriptional modification of mRNA transcription. It can be classified into miRNA, 

IncRNA, and circRNA. One of the key functions of lncRNA is to modulate gene expression 

through diverse mechanisms (Park and Kim, 2023). RNA is closely related to the expression 

of meat quality traits because it is involved in organs, muscles, muscle growth and development, 

muscle fiber type transformation, and intramuscular fat deposition (Jung et al., 2019; 

Morenikeji et al., 2020; Wang et al., 2019). Therefore, it is very important to explore 

transcriptomics of muscle growth regulatory factors such as myostatin and insulin-like growth 

factors that play a role in regulating muscle growth. In other words, transcriptomics, which 

detects spatiotemporal specific expression of genes under different states, is useful for 

explaining the action mechanism responsible for changes in meat quality.  

Transcriptomic technique has evolved through three technological stages: reverse 

transcription-polymerase chain reaction (RT-PCR), gene microarray, and RNA-seq. RT-PCR 



 

 

converts RNA to cDNA, uses cDNA as a template for amplification, and detects the expression 

of target gene after amplification based on fluorescence in the reaction tube (Heller et al., 2019; 

Kang et al., 2023). Gene microarray technology, on the other hand, is based on the principle of 

complementary base pairing. It uses inkjet technology or lithography mask to fix cDNA on the 

matrix to measure RNA abundance (Castillo et al., 2017). The abundance of RNA is 

determined by fluorescence intensity before and after the reaction of test sample with cDNA 

on the matrix (Goh et al., 2018; von der Haar et al., 2017). However, gene microarray has 

several disadvantages. In the case of genes with high RNA abundance, there is a threshold for 

microarray technology. In the case of genes with low expression abundance, fluorescence 

signals can be overwritten, making detection difficult. Moreover, it is difficult to detect 

unknown splicing variations when the background noise is high (Bolón-Canedo et al., 2019). 

RNA-seq is the state-of-the-art technology introduced to overcome these limitations. This 

method enables the detection of transcripts from organisms with unknown genomic sequences 

and facilitates precise RNA quantification (Kang et al., 2022). RNA-seq was first introduced 

in 2008. Progressive sequencing technology has been developed (Goh et al., 2018; Jazayeri et 

al., 2015; Park et al., 2023). The first-generation sequencing technology is represented by 

Sanger, which has a low throughput. Although second-generation sequencing has an advantage 

of high throughput sequencing, short fragments are preferred due to variations among different 

strands during the replication process. Third-generation sequencing techniques achieved ultra-

long read lengths by connecting sequenced RNA molecules directly to loops. However, its 

accuracy of sequencing needs to be improved. Consequently, second-generation sequencing is 

currently the most widely used one due to its high throughput advantage. Among second-

generation sequencing tools, advantages of NGS are more obvious than those of 

pyrosequencing (Sim et al., 2022). 



 

 

Recently, a series of studies have been conducted to explore genes with potential to produce 

better meat quality using transcriptomics, particularly those involved in the proportion and 

composition of intramuscular fat in longissimus dorsi muscles. Content and fatty acid 

composition of intramuscular fat affecting marbling are important factors for evaluating meat 

quality, which can directly affect not only meat quality traits (such as meat color, tenderness, 

and juiciness), but also meat taste characteristics (Hwang et al., 2020; Joo et al., 2013). 

Transcriptomic analysis has revealed genes involved in fatty acid synthesis, triglyceride 

catabolism, gluconeogenesis, ion transport, transporter activity, and so on (Kumar et al., 2021). 

For example, the FASN gene can catalyze the synthesis of long-chain fatty acids, while FABP3 

gene has been found to be primarily volved in cell metabolism and transport of long chain fatty 

acids (Piorkowska et al., 2020). The SCD gene encoding stearoyl-CoA desaturase has also been 

found to able to convert trans fatty acids (C18:1) to conjugated fatty acids (CLA) 

(Czerniawska-Piatkowska et al., 2021). In addition, genes such as GPAT, AGPAT, and DGAT 

have been revealed to be related to the formation of intramuscular fat accumulating between 

muscle fibers and muscle bundles. GPAT gene catalyzes glycerol phosphate and lipyl-

coenzyme A (CoA) to produce lysophosphatidic acid. AGPAT gene contributes to the 

production of diacylglycerol and DGAT gene produces triacylglycerol in the triglyceride 

metabolic pathway (Jarc and Petran, 2019). Differences in expression levels of these genes 

between animal breeds identified using RNA-seq technique have been found to be responsible 

for differences in intramuscular fat content and meat quality quality (Cho et al., 2015; Cho et 

al., 2023; Cheng et al., 2022; Won et al., 2023).  

On the other hand, differences in intramuscular fat and meat quality could be due to feed and 

breed based on transcriptomic analysis. Results of transcriptomic analysis of muscles of 

livestock fed different feed have shown that genes are expressed differently (An et al., 2021). 



 

 

Biological processes affected by differentially expressed genes involve intramuscular fat and 

fatty acid deposition and triglyceride transport. For example, higher expression of ACSL1 gene 

can retard β-oxidation of fat via PPARγ signaling pathway, thereby increasing the level of 

triglyceride (Goh et al., 2018; Zhao et al., 2020). The FABP3 gene can specifically bind free 

fatty acids and facilitate esterification reactions and triglyceride resynthesis, thereby increasing 

the content of intramuscular fat fat (Xu et al., 2020). In addition, the expression of MYOD1 

can inhibit adipogenic differentiation of skeletal muscle satellite cells. After feeding sheep with 

probiotics, MYOD1 expression is silenced, leading to increased intramuscular fat content 

(Zhang et al., 2022; Zhao et al., 2022). It has been also reported that genes related to muscle 

fiber compositions are differentially expressed, which can affect glycolysis and meat color (Su 

et al., 2019). The proportion of type I muscle fiber has been found to be high in old animals. 

Since type I fiber usually contains more lipids than type II fiber, meat with type I fiber is much 

tender (Hwang et al., 2019; Joo et al., 2013). In addition, some recent studies have reported 

that these differences in muscle fiber compositions can ultimately affect taste characteristics 

such as sourness, bitterness, and umami of meat (Hwang et al., 2020; Komiya et al., 2020; Park 

et al., 2022a).  

In summary, previous transcriptomic studies related to meat quality mainly focused on 

intramuscular fat deposition in muscles as specifically depicted in Fig. 1. Consequently, the 

application of transcriptomics in meat research is effective in identifying differentially 

expressed genes and their functions and associated signaling pathways. This can effectively 

describe the molecular mechanisms responsible for the altered phenotype.  

 

  



 

 

Proteomics approach to find biomarkers and to control meat quality  

Because proteome refers to the sum of all proteins expressed in tissues or living organisms 

at a particular time and space, proteomics is defined as the science that characterizes the entire 

set of proteins expressed in cells or tissues (Aizat and Hassan, 2018; Bendixen, 2005). 

Proteomics uses various techniques such as electrophoresis, protein sequencing, and image 

statistics to visually descript the expression and function of a proteome. Proteomics tools 

currently used in scientific research usually include examination of protein expressions, 

modifications, or interactions on a large scale (Seo and Nam, 2023; Kim et al., 2023; Jeon et al., 

2022). In short, proteomics is a study that identifies and determines types and abundance of 

proteins, explains protein-protein interaction, and explores localization of proteins in cells and 

post-translational modification (Jorrin-Novo et al., 2015; Go et al., 2022; Jung et al., 2022; 

Kim et al., 2022b). Protein translational modifications in proteomics refers to acetylation, 

phosphorylation, ubiquitination, methylation, and glycosylation modification involved in 

protein stability, signaling that regulates protein activity, protein metabolism, and protein 

folding. In addition, protein modification can rapidly regulate protein activity and functions 

under endogenous and exogenous stimuli (Kwan et al., 2016; Song et al., 2022; Kim et al., 

2022a). Since protein accounts for the largest proportion of muscle except moisture, various 

proteomic changes can occur during the conversion process from muscle to meat. Therefore, 

proteomics technology can be used to identify meat quality biomarkers. 

The discovery of post-transcriptional mechanisms with direct measurement of protein 

expression provides useful information about biological processes and systems (Aizat and 

Hassan, 2018; Chevalier, 2010; Kim et al., 2023), leading to full-scale initiation of proteomics 

research. Proteomics technologies have been developed through three stages: two-dimensional 

gel electrophoresis, protein chips, and mass spectrometry-based proteomics. Among them, 



 

 

current mass spectrometry is widely used in the study on proteins expressed significantly high 

or low in relation to protein identification, post-translational modification, and subunit-function 

interactions responsible for changes in meat quality. However, it is difficult to perform accurate 

qualitative analysis only by applying mass spectrometry. To better explain the molecular 

mechanisms of biochemical processes, other methods have been combined with mass 

spectrometry to conduct precise quantitative proteomics studies.  

Over the past few years, gel-based proteomic approaches have been used to understand the 

molecular basis of meat quality properties. However, gel-free approaches have recently begun 

to gain more popularity (Ramanathan et al., 2020). The gel-free approach addresses some 

shortcomings associated with gel-based approaches, such as under-representation of extreme 

acid/basic proteins and poor sensitivity for lowly expressed proteins (Nair and Zhai, 2020). 

Especially, in vitro labelling techniques such as isotope-coded affinity tags (ICAT) and isobaric 

tags have been widely used recently. Chemically identical probes with different masses have 

been used to tag treatments for ICAT, with peak intensity of the first mass spectra (MS) being 

used to obtain the relative intensity, while the identity is derived from the second MS. Using 

this second MS (MS/MS), isobaric tags such as TMT (Tandem Mass Tag) and iTRAQ (Isobaric 

Tag for Relative and Absolute Quantitation) can obtain accurate and multiplexed quantification 

(Zhang and Elias, 2017; Kim et al., 2023). In particular, TMT labeling enables multiplexing of 

multiple samples for relative quantification, which can improve analytical precision and 

accuracy.  

A useful explanation of the role of protein expression changes (up-regulation and down-

regulation) in the regulation of cellular activity can be provided through quantification of 

proteins. In other words, the search, screening, and identification of proteins related to meat 

quality enable accurate evaluation and rapid monitoring of meat quality. Therefore, many 



 

 

proteomics studies have been conducted in relation to various factors including growth 

environments, slaughtering methods, processing and storage methods, and protein modification 

in postmortem muscles that affect meat tenderness, color, and WHC. Recently, several 

proteomics studies have expended our understanding of molecular and cellular mechanisms 

that regulate meat tenderness (Bjarnadóttir et al. 2012; Laville et al. 2009; Zhao et al. 2014), 

meat quality (Kim et al., 2019), meat color (Canto et al. 2015; Joseph et al. 2012; Nair et al. 

2016), and WHC of meat (Kim et al., 2015).  

Differentially expressed proteins (DEPs) during long-term frozen storage of meat have been 

investigated using iTRAQ technology. It has been found that up-regulated expression of NADH 

dehydrogenase and IDH3B after the first freeze-thaw cycle can promote a reduction of 

metmyoglobin to myoglobin and improve meat color stability (Gu et al., 2020). Enrichment 

analysis of DEPs has also shown that adenosine triphosphate isomerase and peroxide dismutase 

could be used as potential biomarkers of meat color (Aizat and Hassan, 2018). In addition, it 

has been found that troponin and myosin are related to meat tenderness and that heat shock 

proteins are water retention proteins in meat. Moreover, it has been found that DEPs of 

glycolysis and ubiquitin-proteasome can cause long-term degradation of frozen meat (Kim et 

al., 2015). On the other hand, results of analyzing differentiated proteins in both longissimus 

muscles slaughtered in a non-electric shock mode and a head electric shock mode revealed that 

expression levels of antioxidant, binding, chaperone, and heat shock proteins were increased 

in sheep without electrical shock, leading to resistance to cell death (Kiran et al., 2021). It 

seems that DEP generated under shock and non-impact treatment can be used as an indicator 

of animal welfare. It has been also reported that mild slaughtering practices have a positive 

effect on maintaining heme integrity and high antioxidant activity, inhibit myoglobin oxidation 

to keep the bright meat color (Bakhsh et al., 2018; Hosseini et al., 2019). Regarding meat color 



 

 

changes, sarcoplasmic protein expression has been found to affect meat color stability, with 

more antioxidant and chaperones proteins expressed in beef color stable muscles (longissimus 

lumborum) than in color labile muscles (psoas major) (Joseph et al., 2012). These color stable 

muscles show an over-abundance of myofibrillar proteins, including myosin regulatory light 

chain 2 and myosin light 1/3 (Canto et al. 2015). Sarcoplasmic muscle proteins such as creatine 

kinase M-type and triosephosphate isomerase have also been demonstrated to have positive 

correlations with metmyoglobin reducing activity and color stability (Nair et al., 2016).  

The tenderness of meat is affected by various degrees of glycolysis in postmortem muscle 

cells (Warner et al., 2022). For example, glycogen phosphorylase (GP) catalyzes the 

degradation of glycogen to glucose-1-phosphate. The glycolysis rate is accelerated by GP 

activity enhanced by the phosphorylated form (Li et al., 2017). In the glycolytic pathway, 

pyruvate kinase (PK) acts as a rate-limiting enzyme and catalyzes phosphoenolpyruvate with 

pyruvate and ATP. Because phosphorylated PK is highly active, high levels of phosphorylation 

can promote glycolysis, resulting in tougher meat (Li et al., 2021). In addition, phosphorylated 

proteins are involved in the degradation of calpain proteins and Z-disc-related proteins, the 

stability of myoglobin, and the dissociation of actomyosin by regulating the glycolysis rate 

(Chen et al., 2018; Huang et al., 2020). On the other hand, as thermal processing induces protein 

oxidation which affects meat texture, DEPs could be identified according to heat treatment. 

DEPs can include structural and metabolic proteins such as myosin known to undergo oxidative 

deformation when heated, resulting in tougher meat. In addition, during the cooking process of 

meat, phosphorylation of pyruvate kinase is promoted and glycolysis is accelerated, causing 

greater oxidative stress in muscles and making the meat tougher. A decrease in troponin T and 

an increase in the glycolytic enzyme during boiling treatment can promote tenderness of meat 

(Jia et al., 2022).  



 

 

In summary, proteomics has been widely applied to meat quality research and finding 

relevant biomarkers (Fig. 1). A comprehensive interpretation of results of meat quality studies 

through various proteomic techniques will reveal methods of breeding meat animals that can 

produce better meat quality (Gagaoua et al., 2022).  

 

Metabolomics approach to improve meat quality and taste characteristics 

Metabolomics is defined as systematic analysis of small molecules such as amino acids, fatty 

acids, and glycolytic or tricarboxylic intermediates produced in the biological system (Fiehn 

and Weckwerth, 2003; Ramanathan et al., 2020). A metabolome is a complete set of metabolites 

of biological sample with a low molecular weight of less than 1000 Da. Metabolomics explores 

metabolic mechanisms by qualitatively and quantitatively analyzing metabolites affected by 

internal and external environments using high-throughput techniques (Baharum et al., 2018). 

These metabolomic analyses involve the study of metabolites, the entirety of endogenous small 

molecules within an organism, organ, biological tissue, or cells (Fiehn and Weckwerth, 2003; 

Vasquez et al., 2022). Measuring real-time changes in metabolites is helpful to understand 

ultimate phenotypical changes caused by changes in environment or gene expression in 

biological systems (Huang et al., 2022; Muhizi et al. 2022; Park et al., 2022b). Thus, during 

meat production, an understanding of the direct correlation between metabolites and biological 

phenotypes that vary according to breed, feeding, and storage conditions can be effectively 

used to improve meat quality and taste characteristics.  

Metabolomic analysis requires a high level of techniques because chemical properties 

metabolites vary according to biological environment conditions (Straadt et al., 2014; Zhang 

et al., 2012). Since metabolomics analysis quantifies only about 15-30% of total metabolites 

present in a system (Misra et al. 2019), metabolomic analysis using a single platform is bound 



 

 

to limitation as it might only generate limited information (Gagaoua et al., 2021). Common 

analytical tools used to separate various metabolites include gas chromatography, liquid 

chromatography, capillary electrophoresis, and nuclear magnetic resonance (Baharum et al., 

2018; Ramanathan et al., 2020; Kwon et al., 2022; Harlina et al., 2022; Wang et al., 2022; Eom 

et al., 2022).  

Metabolomic analysis involves the usage of either a single platform or a combination of 

platforms to separate molecules. Popular analytical tools to separate various metabolites 

include nuclear magnetic resonance (NMR), gas chromatography-mass spectrometry (GC-MS), 

and liquid chromatography-mass spectrometry (LC-MS) (Baharum et al., 2018; Ramanathan 

et al., 2020). The combination of mass spectrometry with gas chromatography and liquid 

chromatography is routinely used in meat science research as the use of mass spectrometry 

helps identify and characterize isolated molecules (Ramanathan et al., 2020). In general, GC-

MS is used to measure volatile compounds such as aldehyde, ketone, and alcohol, while LC-

MS is used to detect amino acids, fatty acids, and other non-volatile compounds. NMR is also 

used to understand nutrient states associated with meat quality by measuring molecular 

relaxation time and to distinguish meat quality. With recent development of metabolomic 

technology, the process of identifying metabolites has developed more profoundly. Samples 

can be analyzed by selecting an appropriate method among NMR, GC-MS, and LC-MS 

according to required detection results. Currently, metabolomics techniques are being applied 

to study effects of pre-slaughter factors (such as breed, feed and breeding management) and 

postmortem factors (such as processing and storage conditions) on meat quality. 

Metabolites such as lipids, fatty acids, and volatile compounds are expressed differently 

depending on the breed of livestock. More expression of amyl salicylate, hexyl salicylate, and 

LysoPC (17:0) can increase the pleasant flavor of meat. Expression of alkaloids such as (E)-



 

 

scalamide, murrayanine, and nigakinone increases the bitter taste intensity of meat, while the 

expression of deoxyiso-cucurbitin inhibits the bitter taste. The expression of arachidonic acid 

gives a stimulating and sweet taste (Wang et al., 2019). However, if polyunsaturated fatty acids 

and monounsaturated fatty acids are oxidized during cooking, flavor defects may occur 

(Kosowska et al., 2017). On the other hand, since most alkaloids expressed in meat are derived 

from diet, meat quality and palatability can be improved by controlling dietary compositions 

of livestock. Meat color can be improved through dietary control because the expression of 

acetylcarnitine, L-carnitine, and N-acetylaspartic acid, which can regulate the synthesis of 

myoglobin according to diets, is affected (Wang et al., 2021). Depending on the diet, the 

expression of carnosine and creatinine can affect the bitterness and sourness of meat, 

respectively. In particular, the expression of sweet and umami amino acids such as glutamic 

acid and aspartic acid is affected by the diet (Hwang et al., 2020; Jeong et al., 2020). In addition, 

studies are being conducted to explore biomarkers that can represent meat freshness because 

changes in metabolites that occur during refrigerated storage of meat have a significant impact 

on meat quality and palatability (You et al., 2018). As the refrigeration period increases, the 

degradation of glycogen and proteins increases the synthesis of alanine, aspartic acid, and 

glutamic acid. TCA cycle, amino sugar biosynthesis, and nucleotide metabolic pathways are 

also activated to produce 1,5-dehydrated glucitol (Wu et al., 2023). These can cause decrease 

of pH of meat, activating endogenous proteases and accelerating meat spoilage. Since these 

metabolic studies provide meaningful data for characterization and freshness prediction of meat, 

metabolic techniques not only can suggest ways to improve meat quality, but also can help 

explain effects of breed, feed, breeding management, slaughter, processing, and storage on 

meat metabolites (Muroya, 2023).  



 

 

 Metabolomic analysis related to flavor and taste characteristics of meat is mainly conducted 

on metabolites of lipids and proteins that can be divided into lipidomic and flavor 

metabolomics (Aung et al., 2023). Lipidomics studies cellular lipid metabolism by 

investigating lipid components and contents, while flavor metabolomics intensively studies 

metabolic processes of volatile compounds and amino acids (Zhang et al., 2022). Lipid-rich 

meat is sensitive to oxidation. It provides a distinctive flavor of each livestock species or breeds 

during production and storage, which is affected by breed, nutritional ratios in feed, breeding 

management, slaughter, processing, and storage conditions. High-energy/high-fat feed can 

promote the synthesis of lipids in livestock muscles and increase levels of L-carnitine and 

acetyl-carnitine, while lowering contents of inosine monophosphate and taurine can decrease 

meat color stability (Wang et al., 2021). Expression levels of lipid-derived compounds such as 

1-octen-3-ol, 2-pentyl furan, nonanal, heptanal, and butanal are highly correlated with low IMF 

content, while the expression of dimethyl trisulfide is correlated with a high IMF content (Li 

et al., 2022). On the other hand, castration of animal can improve the flavor of meat by 

increasing IMF content, and decreasing the level of ketone with increasing the level of alcohol, 

aldehyde and ester (Li et al., 2020).  

The expression of metabolites also varies depending on meat storage method. During early 

stages of refrigerated storage at 4°C, levels of 1-octene-3-ol, 6-methyl-2-heptanone, and 3-

heptanone are increased, causing meat to have a floral, fruity, or creamy flavor (Xu et al., 2023). 

At this time, changes in acylcarnitine are related to increases of in unsaturated fatty acids, 

which means that the difference in flavor of meat before and after storage is related to beta-

oxidation of unsaturated fatty acids. In particular, unsaturated fatty acids in triglycerides are 

important substances that can affect meat flavor during early stages of storage while oxidation 

of triglycerides plays a role in late stages of storage. Lipid metabolites that are expressed 



 

 

differentially during meat storage at 4℃ are mainly due to oxidation of glycerophospholipids 

and fatty acyls, which eventually increases contents of polyunsaturated fatty acids (Zhang et 

al., 2023). In addition, oxidation of polyunsaturated fatty acids (PUFA) produces volatile 

carbonyl and accumulation of PUFA promotes mitochondrial uncoupling, continuously 

increasing the content of acylcarnitine, which undergoes β-oxidation and causes cellular heat 

production, thus reducing meat quality. In addition, storing meat at -20℃ for 12 days increases 

the ratio of long-chain acylcarnitines to L-carnitine. It also increases fatty acid oxidation. For 

the next 12 days, β-oxidation of fatty acids decreases, the conversion of phospholipids to 

sphingolipids occurs, the self-oxidation rate of meat reaches food quality limit, and the 

bitterness intensity of meat increases throughout the storage period (Jia et al., 2021a). Various 

lipid metabolites are measured according to the cooking method of meat. Boiling treatment can 

promote the degradation of phosphatidylcholine into sphingomyelin and steaming treatment 

can reduce the loss of phosphatidylcholine and lysophosphatidylcholine (Jia et al., 2021b). 

Regarding the effect of baking on lipid profiles, phosphatidylcholine (PC) (30:6) and PC (28:3) 

are decreased rapidly by 5 minutes of roasting, increased significantly from 5 minutes to 7.5 

minutes, and then decreased again from 7.5 minutes to 15 minutes to show its potential as a 

molecular biomarker for roasting meat (Liu et al., 2022).  

Fig. 1. shows a brief schematic diagram of metabolic markers and pathways related to meat 

quality. Research in lipidomics and flavor metabolomics can sufficiently identify biomarkers 

that control meat quality. Analysis of meat quality and various biomarker lipids can enhance 

understanding of major processes and mechanisms affecting meat lipid and flavor, including 

biosynthesis of unsaturated fatty acids, lipid oxidation, and lipid denaturation. In other words, 

biomarker lipids can be a reference to characterize lipids of meat, which allows us to better 

understand meat quality.  



 

 

 

Multi-Omics approach to improve meat quality and taste characteristics 

As shown in Fig. 2, multi-omics approaches use a combination of individual omics data tools 

in a sequential or simultaneous manner to bridge the genotype-to-phenotype gap (Kuo et al. 

2013). The reason why multi-omics can better explain biochemical changes in meat than a 

single omics is that all biomolecules such as DNA, RNA, proteins, and metabolite functions 

are interrelated. Genes that determine the ability to produce high-quality meat appear 

phenotypes through transcription, translation, post-translational modification, and metabolism. 

Therefore, molecular mechanisms responsible for changes in meat quality can be explored and 

decoded with the aid of multi-omics that integrate genomics, transcriptomics, proteomics, and 

metabolomics (Ramanathan et al., 2020). 

Multi-omics is based on bioinformatics analysis to identify expression differences in big data 

and to predict potential biomarkers (Kim and Kim, 2021). Multi-omics analysis enables 

prediction of biological functions by associating omics data with biological phenotypes 

through cluster analysis. In addition, interactions between RNA/protein/metabolite can be 

predicted by correlating omics data with related pathway mechanisms (Jung et al., 2020). Thus, 

despite the potential of single omics, multi-omics can deepen our understanding of postmortem 

metabolism, thereby developing better strategies to help develop potential meat quality 

biomarkers.  

A major issue in integrating all omics is big data processing, which allows some software to 

be used. However, it has limitations in data integration. In recent years, the integration of 

different omics technologies to explain changes in food quality on a molecular basis has been 

implemented in various research areas such as systems microbiology (Fondi and Liò, 2015), 

food and nutritional science (Kato et al. 2011), disease biology (Pathak and Davé, 2014), and 



 

 

meat science (Lim et al., 2017; Ma et al., 2020; Yan et al., 2021; Windarsih et al., 2022). 

Although successful integration has not yet been realized in meat science research, studies have 

been conducted by integrating transcriptomics and proteomics (Lim et al., 2017; Yan et al., 

2021; Zhao et al., 2022), proteomics and metabolomics (Ma et al., 2020; Windarsih et al., 2022), 

and transcriptomics and metabolomics (Chen et al., 2022; Cui et al., 2023; Wu et al., 2020; 

Zhang et al., 2022).  

In general, most tools utilized in proteomics are extended to genomics data. Genomics data 

are usually analyzed using DNA microarray technology (also called gene expression profiling) 

(Berger et al. 2013). Correlation between mRNA and protein is analyzed using changes in 

mRNA and protein expression levels. Pathway analysis of genes having a consistent, opposite, 

or unrelated expression tendency is performed to obtain an analysis of expression patterns of 

mRNAs and proteins. Pathway and interaction network analysis of differentially expressed 

genes and proteins is based on molecular functions, subcellular localization, and biological 

processes (Salovska et al., 2020). This combination analysis of transcriptome and proteome is 

mainly focused on research related to fat deposition in muscles. Differential genes and proteins 

involved in lipid deposition and amino acid synthesis in meat have been identified and 

understanding of the tenderizing mechanism and flavor of meat has increased (Lim et al., 2017). 

The main purpose of an integrated analysis of proteome and metabolites is to find regulatory 

association between proteins and metabolites. A representative integrated study of proteomes 

and metabolites related to meat quality research has been conducted using callipyge lambs. It 

was found that differentially abundant proteins and metabolites were mainly energy 

metabolism enzymes and coenzymes, apoptosis-related factors, and antioxidant metabolites 

compounds (Ma et al., 2020). Specifically, decreased abundance of pro-apoptotic proteins such 

as cytochrome C and overexpression of anti-apoptotic proteins such as HSP70, BAG3, and 



 

 

PARK7 can cause delayed apoptosis, making callipyge lamb tough. In addition, it was 

confirmed from enzymes expressed high or low in glycolysis and TCA cycle that callipyge 

genes promoted the shift of muscle to higher fast contraction and glycolytic muscle fiber 

composition. On the other hand, meat research studies that combine metabolomics and 

transcriptomics have mainly focused on how fat deposition is regulated and improved in 

tenderness by multiple genes and signaling pathways. High-fiber diets can inactivate genes 

associated with steroid hormone-mediated signaling pathways such as NR1D1, NR4A1, and 

NR4A2 through epigenetic modification. Then retinoic acid regulates glucose metabolism and 

induces gluconeogenesis. When blood sugar content decreases, fat content in muscles 

decreases. In metabolomics related to glucose metabolism, it has been found that 

phosphoenolpyruvate and glucose 6-phosphate are involved in gluconeogenesis and that 

methylbutyric acid can reduce the rate of fat deposition. Studies that combine transcriptomics 

and metabolomics have revealed that although a high-fiber diet can promote muscle fiber 

growth to a certain extent, it can lead to meat toughness (Wu et al., 2020). Recently, multi-

omics of transcriptomics and metabolomics have been increasingly used to study effects of 

various nutritional factors on meat quality.  

 

Summary and future perspectives 

Omics analysis is very beneficial for exploring mechanisms and underlying pathways 

associated with meat quality and safety, nutritional properties of protein and fat, and health 

impacts. Genomics and transcriptomics enable the screening of differentially expressed genes 

for molecular breeding to obtain high-quality and delicious meat. Proteomics provides a 

comprehensive understanding of the molecular mechanisms that affect meat quality, enabling 

accurate control of meat quality. Metabolomics enables the analysis of small metabolites 



 

 

involved in real-time changes in meat quality affected by various factors. Consequently, 

integrated multi-omics can explain differences in meat quality more collectively through 

mutual verification of results from individual omics. 

Since multi-omics depend on high-quality databases, meat quality assessment and prediction 

models for discovered biomarkers related to meat taste and safety should be established. In 

addition, optimization and expansion of existing databases can provide baselines that increase 

profitability of the meat industry and produce high-quality meat and meat products for 

consumers. However, to summarize recent multi-omics studies related to meat quality, some 

challenges need to be addressed. First, although stable nuclide tracing techniques can 

efficiently identify meat quality control-related mechanism because levels of changes in 

intracellular substances can be well known, these techniques are not currently used. Not only 

does searching for biomarkers using multi-omics generally make it difficult to find them for 

single meat quality, but also multi-omics is a robust tool for high throughput screening, making 

reasonable validation difficult when it is used for data annotation and enrichment. Furthermore, 

while the accuracy and preference of multi-omics technologies affect authenticity to a certain 

extent, current database of multi-omics lacks complete data. In addition, efficient and scientific 

methods for correlation and integrated analysis of datasets obtained from multidimensional 

omics studies are still lacking. 

To address these challenges of multi-omics, the application of tracer techniques to meat 

quality research must be strengthened and meat quality regulatory mechanism must be better 

explained by focusing on dynamic changes of intracellular substances. When using multi-

omics techniques to explore meat quality-related mechanisms, potential molecular biomarkers 

should be validated in a reasonable manner and state-of-art omics technologies such as third-

generation transcriptome sequencing, "4D" proteomics, and spatial omics should be applied to 



 

 

future meat quality studies. In addition, a multi-omics database with genes as connection points 

should be established. Integrated algorithm and software for multi-omics data should also be 

developed.  
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Fig. 1. Multi-omics platforms and pathways involved in meat quality traits and intramuscular 

fat in meat research. 

 

 



 

 

 

Fig. 2. Multi-omics data types and approaches to high-marbled beef research. The four layers 

depict different type of omics data. Omics molecular data represented as small circles can affect 

other layers of molecules due to genetic and/or environmental influences. The phenotype of 

high-marbled beef is the result of four layers of complex interaction.  

 

 

 

 


