1	Stimulatory Effect of Milk Protein Peptides on the Growth and Propagation of
2	Lacticaseibacillus casei
3	
4	
5	Chengjie Ma ^{a*} , Miya Su ^a , Zhenmin Liu ^a , Kun Wang ^a , Rui Wang ^a
6	
7	¹ State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Centre
8	of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd.,
9	Shanghai 200436, China
10	
11	*Corresponding author
12	Chengjie Ma
13	State Key Laboratory of Dairy Biotechnology, Dairy Research Institute, Bright Dairy
14	& Food Co., Ltd., 1518 Jiangchang Road (W), Shanghai 200436, China
15	Tel: +86-27-83245107
16	E-mail address: machengjie@brightdairy.com
17	
18	Running title: Stimulatory Effect of Peptides on L. casei
19	

20 Abstract

21 Lacticaseibacillus casei has a slow growth rate in milk. The present study sought to 22 assess the influence of peptides derived from milk on the growth and propagation of L. casei. The milk protein peptides were generated using flavourzyme (FPMP) or neutral 23 protease (NPMP). The peptide concentrations of FPMP_{20%}-supplemented fermented 24 25 milk tended to decrease throughout the fermentation process, furthermore the free amino acid (FAA) concentrations in the FPMP_{20%} sample (409.96 mg/kg) were much 26 27 higher than in the control fermented milk (FM, 62.48 mg/kg) and NPMP_{20%} samples (226.34 mg/kg), indicating that FPMP could be well utilized by L. casei. The FPMP20% 28 sample reached the pH end-point of 3.7 at 42 h, while NPMP_{20%} and FM reached the 29 same pH end-point at 67 h and 90 h. Although NPMP promoted acidification in the 30 early stage of fermentation, the propagation and survival of L. casei were impaired. The 31 number of viable L. casei cells in the FPMP20%, NPMP20%, and FM at 72 h was 9.58, 32 33 8.61, and 8.85 log CFU/g, respectively. Moreover, the contents of critical flavour components in FPMP_{20%} were significantly higher than in FM and NPMP_{20%}. The 34 FPMP-supplemented milk fermented with L. casei showed higher cell numbers, 35 reduced fermentation time, and increased abundance of flavour components. 36

37 Keywords: *Lacticaseibacillus casei*, milk fermentation, flavourzyme, peptide,
 38 growth

39 Introduction

40

41 Lacticaseibacillus casei, previously known as Lactobacillus casei, is traditionally 42 recognized as a probiotic and has numerous applications in the food fermentation industry (Bellaver et al., 2024; Sultana et al., 2023). L. casei has been reported to show 43 44 several health-promoting and nutritional functions, such as immune system regulation, intestinal pathogen inhibition, obesity treatment, cardiovascular disease prevention, and 45 46 microbiota-gut-brain axis modulation (Balasubramanian et al., 2024; Hill et al., 2018; Ibrahim et al., 2023; Pimentel et al., 2021). These promising functions have contributed 47 to a gradual increase in consumer demand for this probiotic. Fermented milk has been 48 49 widely used to produce probiotic products due to its favourable taste and high nutritional value. However, L. casei strains have a slow growth rate in milk; thus, 50 producing fermented dairy products using pure L. casei strains is time-consuming (Ma 51 et al., 2015b; Zhang et al., 2020b). Therefore, determining and optimizing the 52 fermentation conditions of probiotic L. casei in milk have important practical 53 application value. 54

L. casei is one of the most commonly used lactic acid bacteria (LAB), a general term for bacteria that can ferment lactose to produce lactic acid, and they have similar physiological characteristics and metabolic pathways. LAB are typically auxotrophic to some amino acids and vitamins and cannot biosynthesize several nutrients (Koduru et al., 2022). Thus, LAB strains are nutritionally fastidious and require many FAA or peptides that are present in trace amounts in milk, which is insufficient to sustain growth

(Lin et al., 2021; Playford and Weiser, 2021). In the field of milk fermentation, the 61 62 proteolytic system of LAB has gained considerable attention due to its ability to hydrolyze milk casein into peptides or amino acids, ensuring successful reproduction. 63 64 The first step in milk casein utilization by LAB is performed by cell envelope proteases (CEP), as the production of amino acids depends on the extracellular protease activity 65 (Koduru et al., 2022). Although L. casei and Lacticaseibacillus paracasei possess a 66 complete proteolytic system like CEP, the protease activity is low (Satılmış et al., 2023; 67 68 Solieri et al., 2018), which may be a limiting factor for culture in milk. Boulay et al. (2020) found that Streptococcus thermophilus CEP PrtS involved the proteolysis of 69 soya proteins, and the deletion of PrtS gene from S. thermophilus resulted in slow 70 acidification and low growth levels. In another study, peptides served as a potential 71 nitrogen source for Bifidobacterium animalis ssp. lactis during fermentation (Zhang et 72 al., 2024), which could be effectively utilized by different bifidobacterial strains 73 74 through the oligopeptide transport systems (Cui et al., 2022). A previous study reporting the effect of enzymatic hydrolysis of milk proteins on the growth of 75 Lactobacillus gasseri found that oligopeptides were the optimal nitrogen source rather 76 than free amino acids or proteins (Arakawa et al., 2015). In summary, peptides play a 77 key role in the fermentation process of LAB. Therefore, utilizing exogenous proteolytic 78 enzymes to improve the growth and propagation of probiotic L. casei during milk 79 fermentation has high significance. 80

81 Currently, research on peptides initially present in milk and their effect on the 82 metabolism and propagation of *L. casei* is scarce. Therefore, this study aimed to obtain

83	milk protein peptides using different proteases (neutral protease and flavourzyme),
84	determine the effects of these peptides on L. casei, evaluate the properties of fermented
85	milk, and explore whether peptides may act as a growth-stimulatory factor for <i>L. casei</i> .
86	
87	Materials and Methods
88	
89	Bacterial strains and culture conditions
90	
91	L. casei LC2W (China General Microbiological Culture Collection Center, No. 0828)
92	was isolated from traditional dairy products in Inner Mongolia, China, and obtained
93	from Bright Dairy & Food Co., Ltd. (Shanghai, China). L. casei 01 was obtained from
94	Chr. Hansens (Hørsholm, Denmark). L. casei strains were cultured in MRS agar (Oxoid,
95	Basingstoke, UK) under anaerobic conditions (Bugbox Anaerobic System, Ruskinn,
96	Bridgend, UK) with 95% N_2 and 5% CO_2 at 37 °C for 36 h. Single colonies were sub-
97	cultured twice in MRS broth overnight in an MIR-253 incubator (Sanyo, Osaka, Japan)
98	for starter preparation. Both L. casei strains were prepared as direct vat-set cultures (2
99	\times 10 ¹¹ CFU/g) in State Key Laboratory of Dairy Biotechnology (Shanghai, China).
100	
101	Generation of peptides from milk protein
102	
103	The peptides were obtained through hydrolysis of skim milk according to the method

104 described by Nongonierma and FitzGerald (2013) with slight modifications. Skim milk

105	powder (33.4% protein, Fonterra Ltd., Auckland, New Zealand) was reconstituted in
106	distilled water to produce reconstituted skim milk (RSM; 12%, w/w). Neutral protease
107	NP (Danisco Company, Copenhagen, Denmark) or flavourzyme PB03 (a
108	protease/peptidase complex; Pangbo Biological Engineering Co., Ltd., Nanning, China)
109	were then added to RSM at a concentration of 0.1% (w/w) and dispersed under agitation
110	at 50 °C for 60 min using an overhead stirrer (RW20, IKA, Staufenim, Germany). The
111	protease-added RSM was sequentially hydrolyzed at 50 °C for 240 min without stirring.
112	Later, the enzyme was inactivated by heating the hydrolysis sample at 90 °C for 20 min.
113	The NPMP and FPMP were stored at 4 °C until use within 30 d.
114	
115	Peptide supplementation during L. casei milk fermentation
116	
117	NPMP or FPMP was added to the 12% RSM base, replacing 5, 10, 20, or 40% of the
118	base (w/w). Twelve percent of RSM without peptide supplementation was used as the
119	control. The media was heated to 95 °C for 90 min using a GFL1002 water bath (GFL
120	Company, Burgwedel, Germany) and then cooled to 37 °C. The prepared media was
121	then inoculated with <i>L. casei</i> LC2W or <i>L. casei</i> 01 (5×10^6 CFU/g) and incubated at
122	37 °C. The pH values of fermented milk were monitored and measured using a Cinac
123	system (Alliance Instruments, Mery-Sur-Oise, France), with automatic recording every
124	5 min during milk fermentation. The number of viable L. casei cells was determined
	avory 24 h for 72 h during formantation by culturing on MPS again and the call numbers

126 in 72 h-fermented milk samples were further monitored each week during cold storage

127 (4 $^{\circ}$ C) for one month.

128	The fermented milk samples supplemented with 20% NPMP (NPMP20%) and 20%
129	FPMP (FPMP _{20%}) and FM were incubated at 37 °C until the pH value reached 3.70. All
130	samples were then cooled and stored at 4 °C for 24 h. Finally, the volatile flavour
131	compounds and FAA compositions were determined.
132	
133	Change in peptide levels during fermentation
134	
135	The peptide contents in the three fermented milk samples (FM, NPMP20%, and
136	FPMP _{20%}) at 0, 24, 48, and 72 h were measured according to the method described by
137	Dhakal et al. (2024) with some modifications. The reagent was prepared by mixing 25
138	mL of 100 mM borax, 2.5 mL of 20% (w/w) sodium dodecyl sulfate, 40 mg of o-
139	phthaldialdehyde solution (dissolved in 1 mL of methanol), and 100 μL of β -
140	mercaptoethanol and adjusting the final volume to 50 mL with deionized water. The
141	samples were filtered using an ultrafiltration tube with a molecular weight cut-off at 10
142	kDa (Millipore, Billerica, MA), and 50 μ L was mixed with 2 mL of reagent. This
143	reaction mixture was combined for 2 min at room temperature (about 25 °C), and the
144	absorbance at 340 nm was measured using a spectrophotometer (UV-1800, Shimadzu,
145	Kyoto, Japan). The peptide concentrations were quantified using casein tryptone (Difco
146	Laboratories, Sparks, MD) as a standard.
147	

148 Free amino acid analysis

150	The fermented milk samples were pre-treated to remove the proteins, and the amino
151	acids were extracted following the method described by Ma et al. (2015a). The amino
152	acid content of the samples was analyzed using a high-performance liquid
153	chromatography (HPLC) fitted with a sodium cation exchange amino acid analysis
154	column (4 \times 150 mm) and an o-phthalaldehyde post-column derivation system
155	(Pickering, Mountain View, CA). The equipment was coupled with a Waters 510 pump,
156	a 7725i manual injector, and a 363-fluorescence detector (Varian Inc., Walnut Creek,
157	CA). The flow rate was 1.7 mL min ⁻¹ . The elution was performed by applying a linear
158	gradient of 100% solution A for 1 min, followed by 0 - 100% solution B over the
159	subsequent 48 min (solution A: 0.2 M sodium citrate, pH = 3.0; solution B: 0.2 M
160	sodium borate, $pH = 9.8$).

161

162 Analysis of the volatile flavour compounds

163

The volatile compounds in the fermented milk were extracted through headspace solidphase micro-extraction according to the method described by Ma et al. (2015a). The fiber used for manual extraction was DVB/CAR/PDMS (Supelco, Bellefonte, PA). The volatile compounds were analyzed using an Agilent 7890 (II) gas chromatograph (Agilent Technologies, Santa Clara, CA) coupled to an Agilent 5975 series mass selective detector. The SPME fiber was inserted into the injection port that was held at 250 °C, and the compounds were thermally desorbed for 4 min under the split (1:10)

171	conditions. A DB-Wax column (30 m \times 0.25 mm \times 0.25 $\mu\text{m};$ Agilent Technologies) was
172	used to separate the volatile compounds. The temperature of the column was
173	maintained at 45 °C for 5 min, ramped at 10 °C min ⁻¹ to 80 °C, and then further
174	increased to 240 °C at the rate of 5 °C min ⁻¹ . The carrier gas was helium (1 mL min ⁻¹).
175	The mass spectrometer was run in the electron impact mode at 70 eV. The mass scan
176	range was 25 to 400 m/z. The concentrations of volatile flavour compounds in the
177	samples were expressed as the peak area of each compound.
178	
179	Statistical analysis
180	
181	All experiments were conducted in triplicate, and the results were presented as average
182	or average \pm standard deviation (SD). Statistical differences between treatments were
183	evaluated through ANOVA and Tukey's post hoc test ($p < 0.05$) using SPSS version
184	17.0 (SPSS Inc., Chicago, IL, USA).
185	
186	Results and Discussion
187	
188	Effect of peptide supplementation on the acidification ability of <i>L. casei</i>
189	
190	After hydrolysis for 5 h, the pH values of the neutral protease and flavourzyme-
191	supplemented RSM samples were changed slightly from 6.65 to 6.41 and 6.37,

respectively. A small protein precipitate was observed, indicating that enzyme 192 hydrolysis destabilized the skim milk emulsion. A large protein precipitate was 193 observed in the heat-sterilized media when over 40% NPMP or FPMP was added to the 194 RSM (data not shown). Thus, 5%, 10%, and 20% NPMP or FPMP supplementation 195 were used to evaluate the optimal growth conditions. Compared to the control FM, in 196 the early stage of fermentation (0-24 h), 5-20% of NPMP or FPMP significantly 197 promoted the acidification of L. casei. In the middle and late stages of fermentation 198 199 (24-72 h), FPMP10% and FPMP20% still had a significant stimulating effect on fermentation and acid production of L. casei (Table 1). FM reached the pH end-point 200 (3.70) at 90 h, while FPMP_{20%} and NPMP_{20%} reached the same pH end-point only at 42 201 h and 67 h, respectively (Fig. 1). These results indicated that FPMP had a positive 202 impact on the acidification ability of L. casei strains, suggesting that peptide 203 supplementation shortened the production time, improved production efficiency and 204 reduced the risk of microbial contamination. 205

LAB are microorganisms with fastidious requirements. In this study, FPMP or NPMP supplementation compensated for the weak proteolytic capacity of *L. casei*, notably in the early growth phase to overcome the low concentrations of FAA and peptides in milk. These results were consistent with the previous studies reporting that supplemental peptides could be well utilized by *Lactobacillus rhamnosus* and *Bifidobacterium bifidum* (Cui et al., 2022; Zhang et al., 2021).

212

213 Effect of peptide supplementation on the growth and propagation of *L. casei*

215	The nutrient composition of the medium might affect the viable cell counts in the
216	fermented milk culture. Herein, FPMP supplementation significantly enhanced the
217	propagation of L. casei. For instance, the numbers of viable L. casei cells at 24, 48, and
218	72 h in the FPMP _{20%} samples were 8.67, 9.39, and 9.58 log CFU/g, respectively, with
219	a significant increase of 0.44, 0.47, and 0.73 log CFU/g ($p < 0.05$), compared with the
220	control (Fig. 2a). These results indicated that FPMP strongly stimulated both the
221	acidification and propagation of L. casei. However, NPMP supplementation did not
222	promote the reproduction of L. casei in milk fermentation. There was no significant
223	difference in the number of L. casei cells between NPMP20% supplemented sample
224	and the control FM at 24 h, 48 h and 72 h (Fig. 2a). Moreover, cell loss during cold
225	storage in the NPMP20% samples was the highest among the three samples (FM,
226	FPMP _{20%} , and NPMP _{20%}). The FPMP20% samples maintained the highest number of
227	viable L. casei cells throughout the 28 day cold storage. During 14-28 day storage time,
228	the cell counts of the NPMP20% samples were significantly lower ($p < 0.05$) than that
229	of the control FM and FPMP20% samples (Fig. 2b).

NPMP promoted acidification (0-24 h), suggesting that these peptides could be utilized by *L. casei*. However, NPMP might impair the propagation during fermentation and survival during the storage of *L. casei*. Therefore, it was speculated that some peptides in NPMP could stimulate the acidification and growth of *L. casei*, while others might inhibit the growth of *L. casei*. The antibacterial activity of peptides derived from milk has been given special attention. Hydrophobic peptides derived from sheep milk

could severely damage the cell membrane integrity (Yang et al., 2024) and the peptides 236 237 released from yak milk casein using flavourzyme showed strong activity against Staphylococcus aureus (Zhang et al., 2023a). Zhang et al. (2010) reported that peptides 238 with different molecular weights had significantly different influences on the growth of 239 voghurt starter strains (Lactobacillus delbrueckii subsp. bulgaricus and S. 240 241 *thermophilus*), and the peptides with molecular weights below 3 kDa might effectively promote the growth and metabolism of LAB. In another study, different bifidobacteria 242 transported and utilized peptides with different residues due to the specificity and 243 variability of their peptide transport systems (Cui et al., 2022). In this study, the use of 244 different types of enzymes for hydrolysis resulted in different peptide profiles for each 245 hydrolysate. NPMP likely contained protein hydrolysates that inhibited L. casei. In 246 contrast, the inhibitory hydrolysates in FPMP were further degraded by flavourzyme 247 consisting of endoprotease and peptidase. As for the comparison of neutral proteases, 248 249 flavourzyme might obtain more small peptide fragments. Enzymatic hydrolysis is a modest and efficient approach for obtaining soluble peptides from milk protein. 250 Different enzyme types produce hydrolysates with different peptide profiles and have 251 different stimulatory or inhibitory effects. Nevertheless, future studies must focus on 252 screening suitable types of proteases, determining the molecular mass distribution of 253 peptide fractions, analyzing the specificity of peptide transport systems and clarifying 254 255 the stimulatory role of different peptide fractions in L. casei.

256

258 Analysis of changes in peptide concentrations

259

260	The peptide concentration in RSM was very low (0.036 mg/g, Fig. 3). In the control
261	FM, the peptide concentrations increased as fermentation progressed from $0-24$ h (Fig.
262	3), suggesting that the CEP of <i>L. casei</i> played a key role in hydrolyzing extracellular
263	caseins to oligopeptides at this stage. As the peptides were transported and utilized
264	intracellularly, the peptide concentrations in the milk gradually decreased from $24 - 72$
265	h. In NPMP20% and FPMP20%-supplemented samples, the initial peptide concentrations
266	were high at 1.687 mg/g and 1.556 mg/g, respectively. The peptide concentrations in
267	FPMP _{20%} -supplemented milk tended to decrease throughout the fermentation process
268	(Fig. 3), indicating that FPMP could be well utilized by L. casei, and the peptide
269	generation rate was lower than the rate of consumption. The peptide concentrations in
270	NPMP _{20%} -supplemented milk decreased from $0 - 24$ h but increased slightly from $24 - 24$
271	48 h. These results further suggested that some NPMP could be preferentially utilized
272	by L. casei, while others were not utilized well. The peptide consumption rate in
273	NPMP _{20%} -supplemented milk was lower than the rate of generation, which was
274	consistent with the finding that NPMP could not promote the propagation and survival
275	of L. casei.

276

277 Free amino acid analysis

278

FAA analysis is a promising approach to evaluate the protein hydrolysis activity in

280	fermented dairy products based on the FAA contents (Garavand et al., 2023). After
281	fermentation, there was a notable rise in the FAA concentrations in all three milk
282	samples (Table 2). The increase in the total FAA in the FPMP _{20%} samples was much
283	greater than in the FM at the end of fermentation (341.06 mg/kg for FPMP $_{20\%}$ and 54.93
284	mg/kg for FM). It was worth noting that both before and after fermentation, some
285	essential amino acids such as leucine, valine, methionine and isoleucine in FPMP20%
286	samples were much higher than in the FM and NPMP20% samples (Table 2).
287	Casein can be degraded to amino acids by LAB only when milk proteins are
288	hydrolyzed to oligopeptides. Herein, FPMP was easily utilized and the FAA
289	concentrations in the FPMP20% samples were the highest. Flavourzyme degradation
290	obtained the highest FAA contents during the hydrolysis of lentil protein concentrates
291	due to its exopeptidase activity (Vogelsang-O'Dwyer et al., 2023). Although the initial
292	peptide concentrations in the NPMP20% and NPMP20% samples were equivalent (1.687
293	mg/g for NPMP _{20%} vs. 1.556 mg/g for FPMP _{20%}) with no significant difference ($p >$
294	0.05), the total FAA levels in the NPMP $_{20\%}$ samples were much lower than in the
295	FPMP _{20%} samples (409.96 mg/kg for FPMP _{20%} vs. 226.34 mg/kg for NPMP _{20%}). It was
296	possible that some NPMPs could not be effectively utilized and degraded to FAA,
297	which was consistent with the smaller decrease in peptide concentrations in the NPMP $_{20\%}$
298	samples.
299	

_//

Flavour compound analysis

302

Table 3 displays the volatile flavour compounds detected in three fermented milk 303 samples with an end-point pH 3.7. L. casei produced heptanone and nonanone as the 304 primary volatile aroma compounds in all three samples, followed by nonanol, 305 306 pentanone, acetic acid, and undecanone. The amounts of these volatile compounds were the highest in the FPMP20% samples. The amount of only a few aldehydes and 307 308 carboxylic acids (for example, butanal, octanal, nonanal, and butanoic acid) were slightly lower in FPMP_{20%} than in FM or NPMP_{20%}. The flavor is crucial for the food 309 senses. Heptanone was believed to give fermented milk a fruity and cinnamon aroma; 310 nonanone was believed to give fermented milk a green and floral aroma (Shi et al., 311 2024). The volatile aromatic compounds in fermented products are largely derived from 312 peptides and FAA. These ingredients are transformed into flavour compounds through 313 314 milk protein degradation and metabolic pathways of branched amino acids such as leucine, isoleucine and valine (Tian et al., 2023; Zhang et al., 2023b). FPMP 315 supplementation significantly enhanced the initial peptide and FAA contents in the 316 fermented milk. Therefore, the characteristic volatile flavour compounds in L. casei-317 fermented milk were enriched, and the enrichment improved when the milk protein was 318 partially hydrolyzed in the initial stage of fermentation. Further, as these hydrolyzed 319 320 peptides are derived from milk, the "off-flavour" caused by the additions of exogenous ingredients, such as yeast powder, soybean peptone, and tea, can be eliminated. 321 Therefore, pre-treatment of milk using flavourzyme could be considered for large-scale 322

fermentation, which provides an optimized strategy for improving probiotic fermenteddairy products.

325

326 **Conclusions**

327

In this study, the supplementation of neutral protease or flavourzyme significantly 328 increased the peptide contents in milk. The results showed that the peptides could be 329 efficiently utilized by L. casei and the peptide contents in the FPMP-supplemented 330 fermented milk tended to decrease throughout the fermentation process. The peptide 331 contents in the NPMP-supplemented fermented milk decreased in the early stage of 332 fermentation but slightly increased in the middle stage of fermentation, indicating some 333 NPMP were not utilized efficiently by L. casei. NPMP promoted the acidification of L. 334 casei while impairing the propagation and survival of L. casei. FPMP supplementation 335 significantly stimulated the growth and propagation of probiotic L. casei during milk 336 fermentation. Moreover, FPMP20% supplementation significantly increased the FAA 337 levels and the contents of critical flavour components in FPMP20% fermented milk were 338 significantly higher than in FM and NPMP_{20%} fermented milk. Furthermore, higher cell 339 numbers, reduced fermentation time, and increased abundance of flavour components 340 were achieved in FPMP-supplemented fermentation with L. casei. Overall, this 341 approach could be an economically effective method for large-scale fermentation. 342

344	Acknowledgement
345	This work was supported by the National Key R&D Program of China
346	(2022YFD2100705), the Enterprise Innovation Development and Energy Upgrading
347	Project of Municipal State-owned Assets Supervision and Administration Commission
348	(2022013).
349	
350	Author Contributions
351	Chengjie Ma: Formal analysis; Validation; Writing-original draft; Writing-review &
352	editing; Miya Su: Conceptualization; Methodology; Writing-review & editing;
353	Zhenmin Liu: Validation; Writing-review & editing; Kun Wang: Formal analysis;
354	Writing-review & editing; Rui Wang: Investigation; Writing-review & editing.
355	
356	Conflict of interest
357	The authors declare no confict of interest.
358	
359	Data Availability Statement
360	Data sharing not applicable to this article as no datasets were generated or analysed
361	during the current study.
362	

363 **References**

364 Arakawa K, Matsunaga K, Takihiro S, Moritoki A, Ryuto S, Kawai Y, Masuda T,

365	Miyamoto T. 2015. Lactobacillus gasseri requires peptides, not proteins or free
366	amino acids, for growth in milk. J Dairy Sci 98(3):1593–1603.
367	Balasubramanian R, Schneider E, Gunnigle E, Cotter PD, Cryan JF. 2024. Fermented
368	foods: Harnessing their potentialto modulate the microbiota-gut-brain axis for
369	mental health. Neurosci Biobehav Rev 158:105562.
370	Bellaver EH, Redin EE, da Costa IM, Moroni LS, Kempka AP. 2024. Food peptidomic
371	analysis of bovine milk fermented by Lacticaseibacillus casei LBC 237: in silico
372	prediction of bioactive peptides and anticancer potential. Food Res Int 180:114060.
373	Boulay M, Al Haddad M, Rul F. 2020. Streptococcus thermophilus growth in soya milk
374	Sucrose consumption, nitrogen metabolism, soya protein hydrolysis and role of the
375	cell-wall protease PrtS. Int J Food Microbiol 335:108903.
376	Cui S, Gu Z, Wang W, Tang X, Zhang Q, Mao B, Zhang H, Zhao J. 2022.
377	Characterization of peptides available to different biffdobacteria. LWT-Food Sci
378	Technol 169:113958.
379	Dhakal D, Younas T, Bhusal RP, Devkota L, Li L, Zhang B, Dhital S. 2024. The effect
380	of probiotic strains on the proteolytic activity and peptide profiles of lupin oat-based
381	yoghurt. Food Hydrocolloid 149:109570.

- 382 Garavand F, Daly DFM, Gomez-Mascaraque L. 2023. The consequence of
- 383 supplementing with synbiotic systems on free amino acids, free fatty acids, organic
- acids, and some stability indexes of fermented milk. Int Dairy J 137:105477.
- Hill D, Sugrue I, Tobin C, Hill C, Stanton C, Ross RP. 2018. The Lactobacillus casei
- 386 Group: History and Health Related Applications. Front Microbiol 9:107.

- ³⁸⁷ Ibrahim SA, Yeboah PJ, Ayivi RD, Eddin AS, Wijemanna ND, Paidari S, Bakhshayesh
- 388 RV. 2023. A review and comparative perspective on health benefits of probiotic and
- fermented foods. Int J Food Sci Tech 58:4948-4964.
- 390 Lin T, Meletharayil G, Kapoor R, Abbaspourrad A. 2021. Bioactives in bovine milk:
- 391 Chemistry, technology, and applications. Nutr Rev 79: 48–69.
- 392 Ma C, Gong G, Liu Z, Ma A, Chen Z. 2015a. Stimulatory effects of tea supplements
- 393 on the propagation of *Lactobacillus casei* in milk. Int Dairy J 43:1-6.
- 394 Ma C, Ma A, Gong G, Liu Z, Wu Z, Guo B, Chen Z. 2015b. Cracking Streptococcus
- 395 thermophilus to stimulate the growth of the probiotic Lactobacillus casei in co-
- 396 culture. Int J Food Microbiol 210:42-46.
- 397 Nongonierma AB, FitzGerald RJ. 2013. Dipeptidyl peptidase IV inhibitory and
- 398 antioxidative properties of milk protein-derived dipeptides and hydrolysates.
- 399 Peptides 39:157-163.
- 400 Pimentel TC, Brandão LR, de Oliveira MP, Da Costa WKA, Magnani M. 2021. Health
- 401 benefits and technological effects of *Lacticaseibacillus casei*-01: An overview of
- 402 the scientific literature. Trends Food Sci Technol 14:722-737.
- 403 Playford RJ, Weiser MJ. 2021. Bovine Colostrum: Its Constituents and Uses. Nutrients
 404 13:265.
- 405 Satılmış MK, Öztürk Hİ, Demirci T, Denktaş B, Akın N. 2023. Revealing the
 406 proteolytic characteristics of *Lactobacillus*, *Lacticaseibacillus*,
 407 and *Lactiplantibacillus* isolates by *in vitro* and *in situ* perspectives. Food Biosci
 408 55:103086.

409	Shi Z, Fan X, Zhang T, Zeng X, Tu M, Wu Z, Pan D. 2024. The quality and flavor
410	profile of fermented milk produced by Streptococcus thermophilus ABT-T is
411	influenced by the <i>pfs</i> gene in the quorum sensing system. Food Chemi X 23:101653.
412	Solieri L, De Vero L, Tagliazucchi D. 2018. Peptidomic study of casein proteolysis in
413	bovine milk by Lactobacillus casei PRA205 and Lactobacillus rhamnosus PRA331.
414	Int Dairy J 85:237-246.
415	Sultana M, Chan ES, Janarthanan P, Choo WS. 2023. Functional orange juice with
416	Lactobacillus casei and tocotrienol-enriched flaxseed oil co-encapsulation:
417	Physicochemical properties, probiotic viability, oxidative stability, and sensorial
418	acceptability. LWT-Food Sci Technol 188:115388.
419	Tian H, Xiong J, Yu H, Chen C, Lou X. 2023. Flavor optimization in dairy fermentation:
420	From strain screening and metabolic diversity to aroma regulation. Trends Food Sci
421	Technol 141:104194.
422	Vogelsang-O'Dwyer M, Sahin AW, Bot F, O Mahony JA, Bez J, Arendt EK, Zannini
423	E. 2023. Enzymatic hydrolysis of lentil protein concentrates for modification of
424	physicochemical and techno-functional properties. Eur Food Res Technol 249:573-
425	586.
426	Yang T, Zheng W, Wang X, Li Y, Xiao M, Wei G, Tao G, Huang A, Shi Y. 2024. A
427	novel hydrophobic peptide FGMp11: Insights into antimicrobial properties,
428	hydrophobic sites on Staphylococcus aureus and its application in infecting
429	pasteurized milk. Food Chemi Adv 4:100697.

430 Zhang C, Zhang Y, Liu G, Li W, Xia S, Li H, Liu X. 2021. Effects of soybean protein

431	isolates and peptides on the growth and metabolism of Lactobacillus rhamnosus. J
432	Funct Foods 77:104335.
433	Zhang H, Zhang Y, Chang S, Luo Y, Hong H, Tan Y. 2020a. Utilizing fish waste as a
434	sustainable nitrogen source for enhancing growth and metabolism regulation
435	in Bifidobacterium animalis ssp. lactis BB-12. Journal Clean Prod 447:141076.
436	Zhang K, Zhang T, Guo R, Ye Q, Zhao H, Huang X. 2023b. The regulation of key
437	flavor of traditional fermented food by microbial metabolism: A review. Food
438	Chemi X 19:100871.
439	Zhang Q, Zhao M, Qu D, Zhao H, Zhao Q. 2010. Effect of papain-hydrolysed casein
440	peptides on the fermentation kinetics, microbiological survival and physicochemical
441	properties of yoghurt. Int J Food Sci Technol 45:2379-2386.
442	Zhang X, Yang J, Suo H, Tan J, Zhang Y, Song J. 2023a. Identification and molecular
443	mechanism of action of antibacterial peptides from Flavourzyme hydrolyzed yak
444	casein against Staphylococcus aureus. J Dairy Sci 106:3779–3790.
445	Zhang Y, Meng L, Ai M, Qiao Y, Liu G, Fan X, Lv X, Feng Z. 2020b. Nutrient
446	requirements of Lactobacillus casei Shirota and their application in fermented milk.

447 LWT-Food Sci Technol 118:108735.

449	Tables:
450	Table 1 Influence of different types and concentrations of peptide supplements on the
451	pH of fermented milk
452	Table 2 Change of free amino acids after fermentation with and without peptide
453	supplementation
454	Table 3 Peak area values as determined by gas chromatography mass spectrometer for
455	flavor compounds in fermented milk with and without milk protein peptide
456	

459 **Fig.1** The pH values during fermentation supplemented with and without milk protein

461 FM: fermented milk without supplementation; NPMP_{20%}: fermented milk containing

462 20% NPMP; FPMP_{20%}: fermented milk containing 20% FPMP.

⁴⁶⁰ peptide by *Lacticaseibacillus casei* LC2W.

463

464 Fig. 2 The viable cell counts of *Lacticaseibacillus casei* during milk fermentation and cold storage with *Lacticaseibacillus casei*. (a) during milk
 465 fermentation and (b) during cold storage.

All values are mean \pm SD (n=3). The different superscripted lowercase letters indicate significant differences (p < 0.05) between different samples

467 at the same time. The different superscripted capital letters indicate significant differences (p < 0.05) of the same samples at different fermentation

468 time or storage time.

470 Fig. 3 Change in peptide concentrations of different fermented milk with
471 Lacticaseibacillus casei 01.

472 All values are mean \pm SD (n=3). The different superscripted lowercase letters indicate

473 significant differences (p < 0.05) of the same samples at different fermentation time.

474 The different superscripted capital letters indicate significant differences (p < 0.05) of

475 the different samples at the same fermentation time.

Fermentation time	pH values							
(h)	FM	NPMP _{5%}	NPMP _{10%}	NPMP _{20%}	FPMP _{5%}	FPMP _{10%}	FPMP _{20%}	
0	6.42±0.03 ^{Da}	6.41±0.04 ^{Ca}	6.40±0.04 ^{Ca}	6.41±0.03 ^{Ca}	6.41±0.05 ^{Ca}	6.39±0.04 ^{Ca}	6.41±0.03 ^{Ca}	
24	4.51±0.07 ^{Cc}	4.37±0.08 ^{Bbc}	4.31±0.07 ^{Bab}	4.26±0.06 ^{Bab}	4.35±0.09 ^{Bb}	4.24 ± 0.07 ^{Bab}	$4.17{\pm}0.08^{\hbox{Ba}}$	
48	$3.85\pm0.06^{\text{Bc}}$	3.80±0.05 ^{Abc}	3.77±0.07 ^{Abc}	3.75±0.05 ^{Abc}	3.75±0.07 ^{Abc}	3.69±0.06 ^{Aab}	3.61±0.07 ^{Aa}	
72	3.76±0.06 ^{Ac}	3.74±0.05 ^{Ac}	3.73±0.04 ^{Ac}	3.68±0.05 ^{Abc}	3.68±0.04 ^{Abc}	3.62±0.06 ^{Aab}	3.57±0.04 ^{Aa}	

476 **Table 1** Influence of different types and concentrations of peptide supplements on the pH of fermented milk

The pH values at 0 h were measured after sterilization. FM: fermented milk without supplementation; NPMP_{5%}, NPMP_{10%}, NPMP_{20%}, FPMP_{5%}, FPMP_{10%} and FPMP_{20%}: fermented milk containing 5% NPMP, 10% NPMP, 20% NPMP, 5% FPMP, 10% FPMP and 20% FPMP. The starter strain was *Lacticaseibacillus casei* 01. All the pH values are mean of three replications \pm SD. Samples with different superscripted capital letters in the same column are significantly different (p < 0.05); samples with different superscripted lowercase letters in the same row are significantly different (p < 0.05).

Amino ocida	FAA contents	before ferment	ation (mg kg ⁻¹)	FAA contents after fermentation (mg kg ⁻¹)			
Ammo acius	FM	NPMP _{20%}	FPMP20%	FM	NPMP _{20%}	FPMP20%	
Aspartic	0.03 ± 0.01^{a}	0.03±0.01ª	$0.70 \pm 0.05^{\circ}$	$0.35 {\pm} 0.04^{b}$	$0.74 \pm 0.05^{\circ}$	3.15±0.2 ^d	
Threonine	0.13 ± 0.02^{a}	$0.14{\pm}0.02^{a}$	1.21±0.05°	0.21 ± 0.03^{b}	1.78 ± 0.13^{d}	3.06±0.12 ^e	
Serine	$0.12{\pm}0.03^{a}$	$0.12{\pm}0.02^{a}$	$0.71 {\pm} 0.06^{\ b}$	1.42±0.12 ^c	$1.81{\pm}0.11^d$	2.31±0.15 ^e	
Glutamic	$0.14{\pm}0.03^{a}$	$0.15{\pm}0.03^{a}$	$0.52{\pm}0.03^{b}$	1.76±0.11°	13.31 ± 0.25^d	15.14±0.3 ^e	
Proline	0.28 ± 0.03^{a}	$0.27{\pm}0.03^{a}$	1.13 ± 0.03^{b}	13.98±0.35°	$27.34{\pm}0.64^{d}$	36.22±0.82 ^e	
Glycine	$0.14{\pm}0.02^{a}$	$0.14{\pm}0.03^{a}$	$0.33 {\pm} 0.02^{b}$	$0.71 \pm 0.04^{\circ}$	$1.53{\pm}0.05^{d}$	$2.95{\pm}0.08^{e}$	
Alanine	0.36 ± 0.04^{a}	$0.34{\pm}0.05^{a}$	$2.14{\pm}0.07^{b}$	3.21±0.09°	10.79 ± 0.55^{d}	14.26±0.86e	
Cystine	$0.45 {\pm} 0.02^{b}$	0.46 ± 0.03^{b}	2.61±0.08°	$0.35 {\pm} 0.03^{a}$	2.51±0.21°	$2.57 \pm 0.06^{\circ}$	
Valine	1.36 ± 0.06^{a}	1.32±0.04 ^a	4.31 ± 0.12^{b}	15.19±0.43°	33.31 ± 0.68 ^d	39.84±0.86 ^e	
Methionine	$0.02{\pm}0.01^{a}$	0.04 ± 0.01^{b}	11.16 ± 0.32^{d}	0.04 ± 0.02^{b}	2.19±0.24°	11.73±0.42e	
Isoleucine	$0.64{\pm}0.06^{a}$	0.63 ± 0.07^{a}	$3.18{\pm}0.26^{b}$	12.61±0.7°	19.02 ± 0.85^{d}	31.62±0.98e	
Leucine	$0.12{\pm}0.02^{a}$	0.41 ± 0.02^{b}	$22.83{\pm}0.82^d$	6.46±0.48°	50.28±1.13 ^e	$131.17{\pm}2.4^{\rm f}$	
Tyrosine	0.62 ± 0.06^{b}	$0.59 {\pm} 0.07^{b}$	3.41±0.23°	0.49 ± 0.05^{a}	16.62±0.35 ^d	35.87±1.5 ^e	
Phenylalanine	0.27 ± 0.01^{b}	$0.25 {\pm} 0.02^{b}$	2.58±0.21°	0.22±0.01 ^a	15.57 ± 0.57^{d}	32.24±1.25 ^e	
Lysine	0.06 ± 0.01^{a}	0.12 ± 0.02^{b}	6.62 ± 0.32^{d}	1.69±0.42°	23.05 ± 0.89^{e}	$32.83{\pm}2.6^{\rm f}$	
Histidine	$2.03{\pm}0.14^{a}$	1.98±0.22 ^a	4.42 ± 0.34^{b}	2.16±0.24 ^a	5.03±0.56°	$11.02{\pm}0.81^d$	
Arginine	$0.78{\pm}0.07^{a}$	0.80±0.08 ^a	1.04±0.12 ^b	1.63±0.15°	1.46±0.13°	$3.98{\pm}0.32^d$	
Total amino acids	7.55 ± 0.28^{a}	7.79±0.33ª	68.90±0.96°	62.48±0.84 ^b	226.34±2.25 ^d	409.96±3.18 ^e	

Table 2 Change of free amino acids after fermentation with and without peptide supplementation

482 FM: fermented milk without supplementation; NPMP_{20%}: fermented milk containing 20% NPMP; FPMP_{20%}:

483 fermented milk containing 20% FPMP. The starter strain was *Lacticaseibacillus casei* 01. All values are mean ± SD

484 (n=3). Different superscript letters in the same row indicate significant differences between different samples at $p < 10^{-10}$

485

0.05.

481

C I	Averaged peak area (× 10, 000)					
Compound	FM	NPMP _{20%}	FPMP _{20%}			
Acetaldehyde	50.6 ± 1.6^a	89.2±2.9 ^b	50.9±2.1ª			
Butanal	35.1±1.2 ^b	$68.3 \pm 1.9^{\circ}$	20.3±0.8 ^a			
Acetone	$109.2\pm\!3.3^a$	$208.7 \pm 3.1^{\circ}$	172.7 ± 4.2^{b}			
2-Pentanone	496.8 ± 7.1^{a}	542.6 ± 9.4^{b}	1232.6±14.9 ^c			
2-Heptanone	$1094.8{\pm}22.4^{a}$	2776.4 ± 35.7^{b}	6077.1±54.6 ^c			
Octanal	36.7 ± 1.9^{b}	41.9±2.3°	$23.3{\pm}1.2^{a}$			
Propenal	ND	7.1±0.9	ND			
2-Heptanol	$250.1{\pm}5.8^{b}$	302.1±7.1°	213.4±3.9ª			
2-Nonanone	1721.9 ± 31.5^{a}	3439.5±56.3 ^b	3847.9±82.3 ^c			
Nonanal	201.3 ± 4.6^{b}	319.2±6.3°	175.4±3.4 ^a			
Nonanol	36.4±2.3ª	78.3 ± 3.5^{b}	2298.5±33.4°			
Acetic acid	59.6±3.6 ^a	121.7±5.1 ^b	$605.2 \pm 17.6^{\circ}$			
Decanal	ND	ND	68.1±3.2			
1-Hexanol	25.2±1.3ª	158.3 ± 4.3^{b}	191.7±9.3°			
1-Octanol	$24.7{\pm}0.8^{a}$	$37.6{\pm}1.4^{b}$	61.5±1.7°			
1,6-Octadien-3-ol	ND	7.8	ND			
2-Undecanone	226.5±3.3ª	609.3±7.8°	$462.2{\pm}6.7^{b}$			
Benzoic acid	12.7 ± 0.5^{a}	20.8 ± 0.7^{b}	21.1 ± 0.6^{b}			
Butanoic acid	$85.3 \pm 2.6^{\circ}$	$61.3{\pm}1.5^{b}$	$43.9{\pm}1.1^{a}$			
Hexanoic acid	136.2±3.1°	$21.4{\pm}0.8^a$	$77.9{\pm}2.1^{b}$			
Octanoic Acid	$62.5+1.7^{\circ}$	18.6 ± 0.5^{a}	56.4 ± 1.3^{b}			

487 Table 3 Peak area values as determined by GC-MS for flavor compounds in fermented milk with
488 and without milk protein peptide supplementation

489 FM: fermented milk without supplementation; NPMP_{20%}: fermented milk containing 20% NPMP;

490 FPMP_{20%}: fermented milk containing 20% FPMP. The starter strain was *Lacticaseibacillus casei*

491 01. ND: not detected. All values are mean of three replications ± SD. Different superscript letters

492 in the same row indicate significant differences at p < 0.05.