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 11 

Abstract 12 

This study provides an effective strategy for understanding meat flavor. Understanding the 13 

taste of meat is essential for improving meat quality, and the taste should be analyzed based on 14 

complex chemical research to identify various factors that impact the composition, formation, 15 

and development of meat. To address flavor chemistry in meat, the discussion focuses on the 16 

major compounds responsible for the characteristic flavors of different meats, such as lipids, 17 

proteins, and Maillard reaction products (MRPs). Meat flavor is largely based on heat-induced 18 

chemical reactions that convert flavor precursors, such as sugars, proteins, and lipids, into 19 

volatile compounds. The flavor of meat is influenced by animal species, sex, age, feed, and 20 

processing, and in this respect, flavor is one of the representative quality indicators of meat. 21 

Research on meat flavor uses omics technology to study the molecular mechanisms that affect 22 

meat quality, including flavor, tenderness, and fat composition. Therefore, this study provides 23 

a comprehensive understanding of the complex processes governing meat flavor and provides 24 

avenues for further research and industrial applications to advance the meat industry. 25 

 26 

Keywords: meat flavor; flavor chemistry; flavor factor; flavor analysis; omics  27 

 28 
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Introduction 30 

Meat flavor is a multidimensional sensory attribute that substantially influences consumer 31 

preference and the overall perception of meat quality (de Araújo et al., 2022). It is shaped by a 32 

complex interplay between various volatile and non-volatile compounds formed during meat 33 

processing, cooking, and storage (Vilar et al., 2022). Key contributors to meat flavor include 34 

Maillard reaction products (MRPs), lipid oxidation products, and an array of amino acids, 35 

peptides, and nucleotides (Ranmalingam et al., 2019; Sun et al., 2022). These compounds 36 

interact to create distinct aromas, tastes, and overall flavor characteristics that distinguish 37 

different types of meat and determine their acceptability to consumers (Dashdorj et al., 2015). 38 

The Maillard reaction, which occurs between reducing sugars and amino acids during cooking, 39 

is particularly important for the development of characteristic browned flavors in cooked meat 40 

(Li et al., 2021). The products of this generate a myriad of volatile compounds, such as 41 

aldehydes, ketones, and pyrazines, which contribute to desirable roasted and savory notes 42 

(Mottram, 1998). In addition, lipid oxidation, which involves the breakdown of fats, results in 43 

the formation of compounds such as aldehydes, hydrocarbons, and alcohols, which add to the 44 

complexity of meat flavor (Fu et al., 2022).  45 

Different cooking and aging methods, as well as meat processing techniques, can markedly 46 

affect meat flavor (Khan et al., 2015). Marination, curing, cooking, and smoking can also 47 

produce compounds that chemically impart a distinctive flavor (Smith & Acton, 2000). Even 48 

from the same carcass, meat cuts can substantially impact the formation of flavor compounds 49 

in meat (Wood, 2020), and this is influenced by the protein, fat, and moisture content of the 50 

meat, which in turn affects the flavor profile (Thu, 2006; Van et al., 2012). 51 

Recent advancements in analytical techniques, such as gas chromatography-mass 52 

spectrometry (GC-MS) and high-performance liquid chromatography (HPLC), have greatly 53 

enhanced our ability to identify and quantify flavoring compounds (Bubli et al., 2021; Wei et 54 
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al., 2023). These technologies allow the precise analysis of both volatile and non-volatile 55 

constituents of meat, providing detailed profiles of the flavor compounds present (Vilar et al., 56 

2022). By understanding the composition and concentration of these compounds, researchers 57 

and industry professionals can improve meat quality and enhance consumer satisfaction. 58 

Multi-omics approaches in meat flavor research integrate genomics, transcriptomics, 59 

proteomics, and metabolomics to comprehensively understand the molecular mechanisms 60 

underlying flavor formation. This holistic method enables the identification of key flavor-61 

related genes, proteins, and metabolites, as well as their interactions and regulatory pathways. 62 

By providing insights into how factors like breed, diet, and processing influence flavor, multi-63 

omics enhances precision in flavor optimization and supports targeted breeding and processing 64 

strategies.  65 

The objective of this review was to effectively clarify meat flavor and contribute to the 66 

advancement of the meat industry based on a deeper understanding of meat flavor dynamics. 67 

Understanding the principles of various chemical reactions that contribute to meat flavor, along 68 

with the variables that differentiate meat flavors and molecular-level flavor component analysis 69 

techniques, can maximize the potential of meat's flavor profile. In particular, unlike existing 70 

reviews that primarily focus on flavor-inducing components and their formation mechanisms 71 

at the molecular level derived from processing technologies (Xu et al., 2023) or the nutritional 72 

composition of meat (Khan et al., 2015; Fu et al., 2022), this review expands to an interpretation 73 

using holistic information about organisms, such as genome, transcriptome, proteome, 74 

lipidome, and metabolome, that may influence flavor. This comprehensive approach could 75 

provide bridge molecular insights with systems-level understanding, paving the way for 76 

innovative strategies to enhance meat flavor in both research and industry applications. 77 

 78 

  79 
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2. Flavor chemistry in meat and meat products 80 

In general, raw meat has few flavor properties but a slightly smelly and blood-like taste (Van 81 

et al., 2012), however, it contains abundant flavor precursors, including sugars, proteins, and 82 

lipids, which contribute to its meaty flavor. The well-recognized flavor of meat is primarily 83 

attributed to volatile compounds generated upon heat treatment. During heat processing, the 84 

abundant precursors in meat undergo various chemical reactions, breaking down into smaller 85 

molecules (Landy et al., 1996) or undergoing oxidation processes (Kanner, 1994), transforming 86 

into volatile compounds with low molecular weights and flavor properties. These molecular 87 

changes include several multiple reactions derived from heat treatment: the Maillard reaction, 88 

Strecker degradation, lipid degradation, and thiamine and ribonucleotide degradation. Figure 89 

1 illustrates the process of meat flavor formation, along with its precursors and the primary 90 

thermal reactions involved. 91 

 92 

2.1. Maillard reaction 93 

The Maillard reaction plays a crucial role in the formation of the unique flavor and color of 94 

meat. This nonenzymatic browning reaction occurs between reducing sugars and amino acids, 95 

producing various volatile flavor compounds that are essential to the sensory properties of 96 

cooked meat. Diverse volatile compounds, such as aldehydes, alcohols, ketones, furans, and 97 

their derivatives, including pyrrole, pyridine, pyrazine, thiophene, and sulfides, are generated 98 

during thermal processing (Chen et al., 2019; Sun et al., 2021; Yu et al., 2020). The Maillard 99 

reaction is not limited to simple sugars and amino acids and can also involve peptides. The 100 

involvement of food-derived peptides in the Maillard reaction produces MRPs that enhance 101 

meat flavor. Peptides with molecular weights ranging from 1000 to 5000 Da induce flavor-102 
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enhancing effects through the Maillard reaction (Fu et al., 2020). These MRPs are crucial for 103 

generating the umami taste and contribute to the overall palatability of meat (Kang et al., 2019).  104 

Notably, the colors, yields, and types of flavor compounds produced are determined by the 105 

specific conditions under which the Maillard reaction occurs, such as temperature, pH, and 106 

humidity (Ribeiro et al., 2024; Starowicz & Zieliński, 2019; Wei et al., 2019). The reaction 107 

proceeds through three stages: the formation of early glycation products, their degradation, and 108 

the generation of flavor compounds such as pyrazines and thiophenes, which contribute heavily 109 

to the characteristic meat flavor (Starowicz et al., 2019). The distinctive meat flavor produced 110 

by the Maillard reaction is influenced by the presence of specific precursors such as cysteine, 111 

ribose, and lysine, which produce sulfur- and nitrogen-containing compounds (Raza et al., 2020; 112 

Wang et al., 2012; Zhang et al., 2023; Zhu et al., 2018). Glutathione, a tripeptide containing 113 

glutamate, cysteine, and glycine, forms sulfur-containing volatile compounds by cleaving 114 

peptide bonds during thermal processing. It generates important precursors of meat flavors, 115 

such as pyroglutamic acid and cyclic dipeptides (Wang et al., 2012). The Maillard reaction is 116 

closely linked to lipid oxidation in cooked meat (Liu et al., 2024; Mottram & Elmore, 2005; 117 

Zamora & Hidalgo, 2011). The interaction between these two processes enhances the 118 

complexity of the meat flavor profile because volatile compounds derived from lipid oxidation 119 

react with Maillard reaction intermediates. This generates heterocyclic compounds containing 120 

nitrogen and sulfur, which are important for the formation of cooked meat aroma. 121 

The Maillard reaction also influences the color of cooked meat. The final stage of the reaction 122 

leads to the formation of melanoidins, brown polymers that markedly influence the visual 123 

appeal of meat products (Murata, 2021). The dark brown color associated with these polymers 124 

is often perceived as an indicator of a more intense flavor, making it a desirable quality for 125 

many meat products. Higher temperatures generally accelerate the reaction, leading to more 126 

intense flavor formation and darker color in the meat (Bekhit et al., 2019; Kong & Singh, 2016). 127 
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In addition to flavor and color, the Maillard reaction also impacts meat texture (Starowicz et 128 

al., 2019; Sun et al., 2010). Cross-linking of proteins and other compounds during the reaction 129 

can influence meat tenderness, with high levels of MRPs contributing to a firmer texture 130 

(Renzone et al., 2022; Sulaiman et al., 2022).  131 

 132 

2.2. Thermal degradation of carbohydrates 133 

Carbohydrate degradation plays a pivotal role in the formation of flavor compounds in meat. 134 

During the cooking process, carbohydrates, including pentoses and hexoses, are degraded 135 

through thermal reactions, such as the Maillard reaction, caramelization, and pyrolysis. 136 

Caramelization occurs at high temperatures (above melting temperatures of sugars) and 137 

converts sugars into compounds such as furfural and hydroxymethylfurfural, which are key 138 

contributors to flavor formation (Suleman et al., 2020). These intermediates can be further 139 

broken down into aromatic compounds, such as furans, which impart characteristic meat-like 140 

aromas. Chang et al. (2021) proposed a method for improving chicken flavor using a sugar-141 

smoking technique. The authors primarily detected a notable increase in compounds such as 142 

furfural, 5-methyl-2-furancarboxaldehyde, 2-acetyl-5-methylfuran, and 1-(2-furanyl)-143 

ethanone, known products of caramelization and the Maillard reaction. Pyrolysis also occurs 144 

upon exposure to high temperatures, leading to the production of various volatile compounds 145 

such as alcohols, aldehydes, and hydrocarbons. Sugars, particularly riboses from nucleotides, 146 

undergo degradation to form 5-methyl-4-hydroxyfuranone, a compound with a robust meat 147 

flavor (Begum et al., 2019). This process also releases hydrogen sulfide, which reacts with 148 

other flavor precursors to enhance the meat-like aroma (Shibamoto & Russell, 1976). The 149 

interaction between sugar degradation and the Maillard reaction, in which sugars react with 150 

amino acids, is another key pathway in the production of complex flavor compounds. This 151 

reaction generates volatile sulfur compounds such as thiophenes and thiazoles, which 152 
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contribute to the toasted and roasted flavors typical of cooked meat (Shibamoto et al., 1976). 153 

In summary, the combination of carbohydrate degradation, the Maillard reaction, and the 154 

breakdown of other precursors, such as amino acids, thiamine, and nucleotides, results in a 155 

diverse and complex flavor profile associated with meat. 156 

 157 

2.3. Strecker degradation of amino acids 158 

Strecker degradation is a chemical reaction that occurs when amino acids are degraded in the 159 

presence of dicarbonyl compounds produced during the Maillard reaction. This results in the 160 

formation of Strecker aldehydes, which are key contributors to the aroma of cooked meat (Chen 161 

et al., 2024). The interaction of Strecker degradation products with Maillard reaction 162 

intermediates leads to the formation of heterocyclic compounds, such as pyrazines, which 163 

further enhance the roasted flavor profile of cooked meat (Sohail et al., 2022). These 164 

interactions are crucial for generating the complex flavors associated with high-temperature 165 

cooking. Strecker degradation also produces sulfur-containing compounds, such as 166 

methanethiol and dimethyl disulfide, which are formed through the breakdown of methionine 167 

(Cerny, 2015; Schutte & Teranishi, 1974). Strecker degradation of sulfur-containing amino 168 

acids, such as cysteine and methionine, is particularly important in the formation of meaty and 169 

roasted flavors. These reactions produce volatile sulfur compounds that have a low odor 170 

threshold and strongly influence the aroma profile of cooked meat. Aldehydes generated from 171 

branched-chain amino acids, such as 2-methylbutanal and 3-methylbutanal, contribute to fruity 172 

and malty notes and add complexity to the flavor of meat (Wojtasik-Kalinowska et al., 2024). 173 

Strecker degradation is closely linked to lipid oxidation in meat. Lipid oxidation products can 174 

interact with Strecker intermediates, enhancing the development of flavor compounds such as 175 

aldehydes, which contribute to the overall sensory experience of cooked meat (Roldan et al., 176 

2014; Utama et al., 2018). 177 
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 178 

2.4. Lipid oxidation and degradation 179 

In meat, fatty acids undergo oxidation, particularly at high temperatures, resulting in the 180 

formation of various volatile flavor compounds, such as aldehydes, ketones, and alcohols, 181 

which contribute to the overall flavor profile of cooked meat. During the heating process, 182 

phospholipids and triglycerides in meat undergo degradation, releasing short-chain fatty acids 183 

(Ren et al., 2024). These fatty acids are further oxidized to produce hydroperoxides, which can 184 

decompose into volatile compounds and enhance the aroma of cooked meat (Rasinska et al., 185 

2019). The interaction between lipid oxidation products and MRPs is also essential for 186 

generating the complex flavor of cooked meat. Phospholipids play a pivotal role in these 187 

interactions, contributing to the formation of volatile compounds crucial for meat flavor (Cheng 188 

et al., 2024; Mottram & Edwards, 1983). Unsaturated fatty acids are particularly prone to 189 

oxidation, leading to the production of volatile compounds that can either enhance or degrade 190 

meat flavor depending on the degree of oxidation. Linoleic acid (C18:2n-6) and arachidonic 191 

acid (C20:4n-6) are easily oxidized, leading to the formation of volatile compounds, such as 192 

hexanal and 1-octen-3-ol, which are considered off-flavors in meat products (Yu et al., 2024). 193 

To preserve meat quality, it is necessary to control lipid oxidation, which includes the use of 194 

antioxidants (Smet et al., 2008) and the maintenance of low temperatures (Soyer et al., 2010) 195 

during storage and cooking. Among the methods to inhibit lipid oxidation, freezing is effective 196 

in delaying irreversible biochemical reaction in meat, such as phospholipid oxidation and the 197 

generation of toxic compounds including malondialdehyde and cholesterol oxidation products 198 

(Soyer et al., 2010). These strategies help preserve meat flavor and extend its shelf life.  199 

 200 

2.5. Thiamine and ribonucleotide degradation 201 
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Thiamine (vitamin B1) is a bicyclic structure containing sulfur and nitrogen atoms, producing 202 

sulfur or nitrogen-containing heterocyclic compounds, such as furans, pyrimidines, thiols, 203 

thiazoles, sulfides, and disulfides (Brehm et al., 2019; Grosch, 2001; Dwivedi & Arnold, 1973). 204 

One important product is 4-methyl-5-(2-hydroxyethyl)thiazole, which is further degraded into 205 

various types of thiazoles. Specifically, it forms compounds such as 2-methyl-3-furanthiol 206 

and bis(2-methyl-3-furyl) disulfide, both of which are associated with strong meat flavors 207 

(Tang et al., 2013). Additionally, 2-acetylthiophene (toasty) and 2-formyl-5-208 

methylthiophene (meaty) contribute to the flavor complexity of cooked meat (Feng et al., 209 

2018). These volatile compounds derived from thiamine degradation were selected as 210 

representative compounds of the characteristic aroma of pork, which is rich in thiamine 211 

precursors (Han et al., 2021). 212 

Nucleotide degradation, particularly of inosine monophosphate (IMP), is a key contributor to 213 

meat flavor, imparting characteristic umami and brothy flavors to meats such as pork and 214 

chicken (Yang et al., 2020; Zhang et al., 2018). The process through which the nucleotide 215 

adenosine monophosphate is broken down into IMP and hypoxanthine is responsible for 216 

changes in flavor during meat maturation, changing from a savory to a slightly bitter flavor 217 

with increasing hypoxanthine levels (Ichimura et al., 2017). The increase of hypoxanthine 218 

content (under 7.0 μmol/g in sample) has been reported to positively influence the taste of cured 219 

meat (Ichimura et al., 2016). The Maillard reaction, which involves ribose and amino acids 220 

from nucleotide degradation, also plays a role in producing sulfur-containing flavor compounds 221 

that contribute to the meaty aroma. The addition of IMP to beef at ten times its natural 222 

concentration increased the production of thiols and disulfides containing furan groups, which 223 

are key compounds that contribute to the aroma of meat (Ichimura et al., 2017). 224 

 225 
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3. Factors influencing the flavor of meat 226 

Meat flavor, a representative indicator of meat quality, is affected by animal species, sex, age, 227 

feed, and processing. The effects of these factors on meat flavor are described in Table 1. Animal 228 

species possess unique flavors owing to differences in their carcass composition, including protein, 229 

fat, and moisture. Meat flavor can be influenced by factors such as total fat, intramuscular fat, and 230 

fatty acid composition. Fat levels impact the fatty acid profile of meat, as greater fat accumulation 231 

tends to increase the amounts of saturated and monounsaturated fatty acids more rapidly, thereby 232 

reducing the relative proportions of polyunsaturated fatty acids and the polyunsaturated/saturated 233 

ratio (DeSmet et al., 2004). Ba et al. (2013) concluded that the breed (e.g., Hanwoo versus Angus) 234 

could considerably impact the physicochemical quality, sensory characteristics, and content of 235 

volatile flavor compounds in meat. 236 

Additionally, the impact of animal sex on meat flavor has been well documented. Gorraiz et al. 237 

(2006) reported that Pirenaica and Friesian bulls and heifers demonstrated notable differences in 238 

volatile compounds, odors, and flavors. After cooking, bull beef had a bloody flavor that was 239 

linked to a high 2-propanone content, along with a more pronounced liver-like odor and flavor, 240 

whereas heifer beef exhibited a robust characteristic flavor. The differences in juiciness and flavor 241 

intensity between male and female lambs could be attributed to variations in intramuscular fat, 242 

which plays a major role in the development of aroma and flavor in meat (Brennand & Lindsay, 243 

1992). 244 

The age of an animal can markedly impact flavor, resulting in a distinctive aroma or poor quality 245 

as it ages (Fry et al., 1958). Khan et al. (2015) reported that age impacts collagen solubility in the 246 

muscle and increases flavor intensity, with older animals possessing higher levels of straight-chain 247 

fatty acids. Foraker et al. (2020) found that animal age affects flavor and also influences overall 248 

taste in meat quality. 249 
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Animal feed is a notable cost factor in livestock production, and the type of feed plays a crucial 250 

role in determining carcass conformation and the physicochemical and organoleptic characteristics 251 

of meat, such as proximate composition, fatty acid profile, tenderness, and color (Andersen et al., 252 

2005; Dinh et al., 2021; Wood et al., 2008). Feed systems affect carcass composition and fattening, 253 

which can affect meat flavor (Watkins et al., 2013). Young et al. (1997) reported that feed type 254 

affected the fatty acid composition of meat. Additionally, the authors detected the presence of 255 

volatile compounds such as terpenes and diterpenoids in pasture-raised lambs. Grain-finished 256 

animals also possess high concentrations of short-branched-chain fatty acids, which are associated 257 

with the "mutton" aroma of cooked sheep meat (Young et al., 2003). According to Melton (1990), 258 

high-energy grain diets produced more acceptable or more intense flavors in red meat than low-259 

energy forage or grass diets, and that flavor changes were greater in beef than in pork as 260 

unsaturation in the diet increased. 261 

The meat processing process can also impart a unique flavor, and various technologies have 262 

been developed to enhance this flavor. Curing, aging, cooking, and smoking are used to impart or 263 

enhance meat flavor. Wang et al. (2012) showed that decreasing the level of curing salt increased 264 

the formation of flavor-active volatiles in dry-cured turkey ham. Jia et al. (2024) reported that the 265 

addition of salt and nitrates/nitrites for meat curing was associated with the color and flavor of 266 

cured meat. Dou et al. (2022) reported that aging can improve meat flavor by increasing the amount 267 

of flavor compounds through enzymatic action, thereby enhancing the amount of volatile 268 

compounds. Liu et al. (2024) detected the presence of 62 volatile flavor compounds during the 269 

dry-aging period, and the contents of Strecker aldehydes (2-methyl-butanal and 3-methyl-butanal), 270 

acids, heterocyclic compounds, and ethyl acetate increased with increasing dry-aging time. Zhu et 271 

al. (2019) reported that cooking enhances the flavor of meat owing to its effects on the amounts of 272 

free amino acids, carnosine, pyrazine, and hexanol. Guo et al. (2021) found that wood-smoked 273 
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bacon had stronger smoke and fat aromas than liquid-smoked bacon, and aldehydes were the most 274 

abundant compound groups. Begić et al. (2022) detected a positive correlation between the 275 

contents of phenols and hydrocarbons, alcohols, ketones, esters and lactones, terpenes, aromatic 276 

hydrocarbons, and acids in dry-smoked goat meat using principal component analysis. Therefore, 277 

the meat processing process can increase the amount of volatile compounds to impart a unique 278 

flavor to meat, and the mechanism for producing flavor components can also change depending 279 

on the processing process method. 280 

 281 

4. Techniques for identifying flavor compounds in meat 282 

4.1. Extraction and analysis of odor-active volatile compounds in meat 283 

The components that contribute to the flavor and aroma of meat are highly dynamic and diverse, 284 

making it advisable to apply strategies and techniques tailored to the specific research objectives 285 

(Figure 2). Volatile compounds are organic chemicals that easily evaporate and release distinct 286 

odors, which are commonly found in plants, fruits, and essential oils. These compounds play 287 

crucial roles in determining the aroma and flavor profiles of foods, beverages, and perfumes 288 

(Chambers IV & Koppel, 2013; Guichard, 2002). They are highly reactive and unstable; therefore, 289 

various factors, such as temperature, extraction time, and interaction with the matrix, must be 290 

considered when extracting volatile compounds from food (Madruga et al., 2009; Wagner & 291 

Franco, 2012). Food flavor analysis is typically performed to separate individual volatile 292 

compounds from the food matrix based on their physicochemical properties while simultaneously 293 

gathering the entire set of volatile compounds. It can efficiently extract volatile compounds from 294 

foods using the chemical properties of solvents; however, it has high selectivity owing to the 295 

affinity between the compounds and the solvent. Recently, there has been an increasing preference 296 

for extraction methods that avoid the use of organic solvents or employ nonthermal techniques. 297 
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Steam distillation is a typical extraction process, in which steam is used to separate volatile 298 

compounds from a liquid matrix at low temperatures. Simultaneous distillation extraction 299 

combines steam and solvent extraction and is an important extraction method for isolating 3-300 

methylindole and p-cresol, which are crucial to the 'pastoral' flavor characteristics of lamb 301 

(Schreurs et al., 2007). Solvent-assisted flavor evaporation is a gentle technique that operates at 302 

low temperatures and high vacuum, preserving sensitive compounds during extraction. It can be 303 

used for flavor extraction from milk, raw meat, and ham (Colahan-Sederstrom & Peterson, 2005; 304 

Liu et al., 2022); however, it is a time-consuming and laborious process. Solid-phase 305 

microextraction (SPME) involves exposing a fiber coated with an adsorbent to the sample or 306 

headspace to capture volatile compounds. This technique is preferred for flavor analysis owing to 307 

its simple extraction process, cost-effectiveness, solvent-free nature, and high sensitivity. SPME 308 

is an effective extraction method capable of identifying volatile compounds in various meat 309 

products, as demonstrated in a previous study that compared volatile compound extraction from 310 

beef and lamb fats (Watkins et al., 2012). Stir-bar sorptive extraction (SBSE) uses a coated stir bar 311 

to absorb volatile compounds from a sample in the absence of solvents. SBSE has an extraction 312 

phase that is 50–250 times larger than that of SPME (Ngamchuachit et al., 2020), resulting in 313 

enhanced extraction capabilities, and is used to extract volatile compounds from various meat 314 

products (Benet et al., 2015; Ngamchuachit et al., 2020). 315 

Mass spectrometry (MS) is a typical analytical method for volatile flavor compound analysis 316 

owing to its ability to provide detailed chemical identification and quantification of individual 317 

compounds. Coupled with GC-MS, MS facilitates the precise separation and detection of complex 318 

volatile compound mixtures. Liquid chromatography-MS (LC-MS) is well suited for in-depth 319 

flavor analysis, enabling the identification of semi- or non-volatile compound profiles in foods. To 320 

identify key flavor compounds and elucidate the mechanism of flavor formation in foods, it is 321 
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important to identify the composition of volatile and non-volatile compounds. Kang et al. (2024) 322 

investigated key volatile and non-volatile metabolites and their metabolic pathways using GC-MS 323 

and LC-MS to determine the molecular regulatory mechanisms and support molecular breeding 324 

for yak meat flavor formation. In addition, Zhang et al. (2024) provided a rapid LC-MS/MS 325 

method to detect livestock species in meat products. 326 

The electronic nose (E-nose) mimics human olfactory senses by using an array of sensors to 327 

detect volatile compounds based on patterns, although it cannot identify individual compounds. It 328 

is used for the rapid classification and comparison of aroma profiles, particularly for quality control 329 

and differentiation of products. Similarly, the electronic tongue (e-tongue) assesses flavor 330 

attributes, such as sweetness, bitterness, and umami, using sensors that detect taste-related 331 

chemicals in liquids. These electronic sensory devices can be used to determine the freshness of 332 

meat samples (Chotimah et al., 2024), provide indicators to distinguish their origin (Yuan et al., 333 

2024), or yield information regarding unique flavor characteristics depending on the muscle type 334 

(Zhou et al., 2024). 335 

Gas chromatography-olfactometry (GC-O) combines chemical analysis with sensory evaluation; 336 

human panelists sniff the GC effluent to identify odor-active compounds. GC-O is particularly 337 

useful for detecting specific compounds that contribute the most to the overall aroma or flavor of 338 

a product. Determination of odor-active compounds involves sensory and chemical techniques, 339 

including aroma extract dilution analysis (AEDA) and time-intensity methods. In AEDA, flavor 340 

extracts are diluted in a stepwise manner, and panelists evaluate each dilution for aroma, allowing 341 

identification of the most potent odor-active compounds based on their detection at higher dilutions. 342 

The time-intensity method records the perception of an aroma over time, providing insight into the 343 

duration and intensity of the impact of an odor-active compound. To quantify the contribution of 344 

these compounds, the odor activity value (OAV) is calculated by dividing the concentration of 345 
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each compound by its odor threshold (the concentration at which it can be perceived). Compounds 346 

with an OAV greater than one are considered to substantially contribute to the overall aroma. The 347 

identification of odor-active compounds in meat not only provides crucial indicators for the 348 

sensory perception of meat flavor but also provides essential information for recreating its aroma 349 

(Nie et al., 2024; Pu et al., 2020; Wang et al., 2022). These methods allow researchers to prioritize 350 

compounds not only by presence but also by their sensory relevance, combining chemical data 351 

with human perception to effectively identify the compounds that define a product’s aroma profile. 352 

This approach ensures that both potency and perceptibility are considered in flavor analysis. 353 

 354 

4.2. Omics technology 355 

Recent advances in high-throughput sequencing technologies, particularly genomics, 356 

transcriptomics, proteomics, and metabolomics, have enabled a comprehensive understanding of 357 

meat quality and taste at the molecular level (Table 2). These omics technologies are employed to 358 

explore the genetic, protein, and metabolic contributions to meat quality. Genomic studies have 359 

focused on identifying genes related to economically important traits such as tenderness, fat 360 

deposition, and meat color (Arikawa et al., 2024; Marín-Garzón et al., 2021). Advanced 361 

sequencing tools, such as long-read sequencing (Liu et al., 2024) and combination with artificial 362 

ingelligence (Hamadani et al., 2022), have made it easier to investigate the role of these genes in 363 

improving meat quality. Long-read sequencing is a technology developed to overcome the 364 

limitations of NGS (Next-Generation Sequencing), which struggles with errors in genome 365 

assembly and difficulties in decoding repetitive regions due to its short read lengths. It leverages 366 

the advantages of TGS (Third-Generation Sequencing), including long read lengths, real-time base 367 

sequencing, and the ability to directly sequence DNA/RNA without PCR amplification. TGS 368 

offers significant advantages in livestock research by enabling the detection of rare genes, 369 
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structural variations, and transcriptional complexity, while facilitating superior breeding, genetic 370 

reproduction, and epigenetic analysis through its long reads, real-time sequencing, and reduced 371 

bioinformatics costs. 372 

Research on meat flavor using transcriptome analysis contributes to improving the taste and 373 

quality of meat by uncovering various gene expression patterns and metabolic pathways. 374 

Transcriptomics, which focuses on gene expression profiles, has revealed the influence of genes 375 

on fat accumulation, muscle development, and tenderness (Bongiorni et al., 2016; Wang et al., 376 

2024). These data help us understand how feeding management and other factors affect meat 377 

quality at the genetic level. Studies using transcriptomic approaches to investigate the molecular 378 

basis of beef quality highlight the strengths of high-throughput transcriptomics as a more sensitive 379 

and accurate analytical method for comprehensively exploring the transcriptional landscape of 380 

biological systems (Wang et al., 2009). 381 

Molecular-level research, including proteomics, lipidomics, and metabolomics, can integrate 382 

data obtained from various biological layers, advancing meat quality and flavor studies in a more 383 

precise and practical direction. Proteomics is a technology that analyzes protein expression, 384 

modifications (e.g., phosphorylation, glycosylation), and interactions to identify their functional 385 

roles, making it highly useful for meat quality analysis. Proteomics is used to investigate how 386 

proteins influence meat quality, particularly how they change during the pre- and post-slaughter 387 

phases (Kim et al., 2021; Lamri et al., 2023). Proteomics has also revealed the impact of various 388 

factors, such as animal breed, on protein expression profiles in meat (Di Luca et al., 2022). 389 

Lipidomics comprehensively analyzes lipid metabolites, including studies on fatty acid 390 

composition and lipid metabolic pathways. It is particularly important for evaluating fat 391 

accumulation and its impact on meat flavor and juiciness (Guo et al., 2022; Zhang et al., 2023). 392 

Lipid metabolism plays a pivotal role in determining the organoleptic properties of meat, including 393 
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its taste and texture (Ramalingam, Song, & Hwang, 2019). Finally, metabolomics aims to quantify 394 

and qualitatively analyze the end products of metabolism to interpret biochemical pathways. 395 

Metabolomics focuses on small molecules and metabolites involved in real-time changes in meat 396 

quality. Based on the metabolic approach, biochemical processes such as lipid oxidation and 397 

glycolysis contribute to the flavor and tenderness of meat (Jia et al., 2021; Tamura et al., 2022; Yu 398 

et al., 2024).  399 

Multi-omics approaches integrate different omics platforms to provide deeper insights into the 400 

molecular mechanisms responsible for meat quality. This integration facilitates the identification 401 

of biomarkers related to taste, texture, and other sensory attributes. Multi-omics approaches have 402 

also been applied to study food fraud and the authenticity of meat products. Comprehensive 403 

strategies are particularly useful for detecting species-specific markers that can reveal the 404 

adulteration of meat products (Liu et al., 2024; Ma et al., 2024; Zhang et al., 2024). Proteomics 405 

and metabolomics can be to uncover regulatory connections between proteins and metabolites, 406 

while metabolomics and transcriptomics has primarily explored how fat deposition can be 407 

controlled and tenderness of meat is enhanced though the involvement of various genes and 408 

signaling pathways. According to research on beef quality (Ma et al., 2024), intramuscular fat is a 409 

key factor in determining beef quality. Through integrated omics approach, including 410 

metabolomics and trasncriptomics, it was revealed that the composition of flavor compounds 411 

significantly differed based on the contents of intramuscular fat and identified major genes 412 

associated with this variation. In meat science, omics research involves improving the accuracy 413 

and efficiency of these technologies, which includes optimizing bioinformatic tools and expanding 414 

existing databases to better predict and control meat quality. 415 

 416 

 417 
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Conclusion 418 

This review provides insights into effective strategies for understanding meat flavors. The 419 

strategic presentation of meat flavor, the most important factor affecting meat quality, could be a 420 

cornerstone in advancing the meat industry. Meat flavor is primarily developed through heat-421 

induced chemical reactions that transform flavor precursors such as sugars, proteins, and lipids 422 

into volatile compounds. These reactions, including the Maillard reaction and lipid degradation, 423 

contribute to the complex flavor profile of cooked meat. Meat flavor is influenced by factors such 424 

as species, sex, age, feed, and processing, which affect its physicochemical, sensory, and volatile 425 

compound characteristics. Processing methods like curing, aging, cooking, and smoking enhance 426 

flavor by altering volatile compounds and flavor precursors. Volatile compounds, essential for 427 

aroma and flavor, are extracted using methods like steam distillation, SPME, and SBSE, with 428 

analysis often conducted via GC-MS or LC-MS for detailed profiling. Advanced techniques, 429 

including electronic noses and GC-O, integrate sensory and chemical data to identify key odor-430 

active compounds and their contributions to food flavors. Omic technologies, including genomics, 431 

proteomics, and metabolomics, offer comprehensive insights into the molecular mechanisms that 432 

influence meat quality, such as flavor, tenderness, and fat composition. This review was aimed at 433 

overcoming this situation and providing insights into the development of the meat industry, 434 

thereby contributing to its development of the meat industry. 435 
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Table 1.  Analysis of factors influencing meat flavor 

Factors Influencing meat flavor References 

Animal species Animal species have a unique flavor due to 

differences in protein and fat content 

 

Dinh et al., 2021; Park et al. 

2024. 

Animal sex Differences in intracutaneous and subcutaneous 

fat between the sexes of animals may influence 

flavor-related compounds. 

 

Jayasena et al., 2014; Khan 

et al., 2015; Lorenze et al., 

2013 

Animal age Animal age affects intramuscular collagen 

solubility and fatty acid composition, affecting 

flavor. 

 

Jaborek et al., 2020 

Animal feed Animal feed affects flavor by changing the fatty 

acid composition and meat composition. 

 

Wood et al., 2008 

Processing 

(curing, aging, 

cooking, and 

smoking) 

Curing produces desirable flavors by chemical 

reactions of proteins and fats with salt and nitrite. 

Martin, 2001; Ramarathnam 

& Rubin, 1994 

Aging enhances the flavor of meat by increasing 

the amount of flavor compounds via enzymatic 

action or by increasing the amount of volatile 

compounds derived from fatty acid degradation. 

 

Dou et al., 2022; Liu et al., 

2024 

Cooking enhances the flavor of meat by impacting 

the amount of free amino acids, carnosine, 

pyrazine, and hexanol. Cooking also induces the 

oxidation of lipids contained in meat to form 

flavor. 

 

Khan et al., 2015; Lorenzen 

et al., 2005; Zhu et al. 2019 

 

Smoking affects the satisfactory flavor of meat 

owing to the influence of phenols, alcohols, 

methyl ketones, and esters 

Gue et al., 2021; Van et al., 

2012 

 

  

https://www.sciencedirect.com/science/article/pii/S0309174015300723#bb9007
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Table 2. Analysis of recent studies to identify trends in meat flavor analysis methods  

Keywords Samples Extraction Instrument Analytical method References 

Flavor 

extraction 

Chicken, pork, 

duck, beef, 

mutton meat 

HS-SPME GC-MS Volatile profiling 

Multivariate 

analysis (PCA, 

PLS_DA, OPLS-

DA) 

Yu et al., 

2024 

Beef, raw ham, 

baked ham, 

pork sausage, 

and chicken 

meat 

HS-SPME GC-MS Volatile profiling 

Multivariate 

analysis (PCA) 

Acquaticci 

et al., 2024 

Dry-cured ham Headspace sorptive 

extraction, DHE 

GC-MS Volatile profiling,  

Multivariate 

analysis (PCA) 

Segura-

Borrego, 

Callejón, & 

Morales, 

2023 

Grilled chicken DHE, SBSE GC-O/MS Volatile profiling,  

olfactory detection 

Ngamchuac

hit et al., 

2020 

Dry-rendered 

beef fat  

SAFE GC-MS, GC-O Odor-active 

compounds 

identifying 

Yang, Pei, 

Du, & Xie, 

2023 

Jinhua ham SAFE, SPME, Needle 

trap 

GC–TOF/MS Odor-active 

compounds 

identifying 

Liu et al., 

2022 

Electronic 

sensor 

Vacuum-

packaged 

Chicken meat 

Headspace extraction Electronic nose discrimination of 

freshness 

Chotimah et 

al., 2024 

Yak Jerky Headspace extraction, 

aqueous solution 

Electronic 

nose/tongue, GC-

IMS 

Flavor profiling 

and discrimination 

model 

Zhou et al., 

2024 

Sauced Pork Headspace extraction, 

aqueous solution 

Electronic 

nose/tongue, GC-

MS, GC-IMS 

Discrimination of 

different regions 

Yuan et al., 

2024 

Omics 

technologies 

Beef cattle - - Genomics Arikawa et 

al., 2024 

Pork meat - - Transcriptomics Wang et al., 

2024 

Broiler chicken 

breast 

2% SDS buffer HPLC-MS/MS Proteomics Yang et al., 

2023 

Beef meat Acid hydrolysis, 

SE(cold acetone) 

LC-MS/MS Proteomics Kim et al., 

2021 

Chicken meat LLE 

(chloroform/methanol

) 

UPLC-ESI-MS Lipidomics Zhang et al., 

2023 

Dry-cured 

mutton ham  

Solvent extraction UPLC-MS/MS Lipidomics Guo et al., 

2022 

Meat exudate  LLE (cold 

methanol/water) 

UHPLC-MS/MS Metabolomics Yu et al., 

2024 

Goat meat LLE 

(methanol/acetonitrile

/water) 

UHPLC-Q-

Orbitrap-MS 

Metabolomics Jia et al., 

2021 
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Aged pork LLE 

(methanol/chloroform

/water) 

GC-TOF/MS Metabolomics Tamura et 

al., 2022 

Roasted quail 

meat 

SAFE, LLE 

(chloroform/methanol

) 

GC-O/MS, 

HPLC-HRMS 

Lipidomics & 

volatilomics 

Liu et al., 

2024 

Pork cuts Headspace extraction, 

LLE 

(chloroform/methanol

) 

GC×GC-

TOF/MS, LC-

MS/MS 

VOC, Lipidomics 

& Transcriptome 

Zhang et al., 

2024 

Xinjiang brown 

beef  

Headspace extraction, 

SE (methanol) 

GC×GC-

TOF/MS, LC-MS 

Metabolomics & 

Transcriptomics 

Ma et al., 

2024 

Sensory test Chicken broth HS-SPME, SAFE GC-O/MS AEDA Nie et al., 

2024 

Beef flavoring SPME, DHS, LLE SGC×GC-O/MS, 

Sensory test 

AEDA, OAV Wang et al., 

2022 

Smoked cured 

pork meat 

SDE GC-MS, GC-

O/MS, Sensory 

test 

AEDA, OAV Pu et al., 

2020 

* HS-SPME, headspace-solid phase microextraction; DHE, Dynamic headspace extraction; SBSE, stir bar sorptive extraction; 

SAFE, solvent-assisted flavor extraction; SE, solvent extraction; LLE, liquid-liquid extraction; SDE, simultaneous distillation and 

extraction; GC-MS, gas chromatography-mass spectrometry; GC-O, gas chromatography-olfactometry; GC-TOF/MS, gas 

chromatography-time of flight-mass spectrometry; GC-IMS, gas chromatography-ion mobility spectrometry; LC-MS, liquid 

chromatography-mass spectrometry; UPLC-ESI-MS, ultra-performance liquid chromatography-electrospray ionization-mass 

spectrometry; SGC×GC-O/MS, switchable two-dimensional gas chromatography-olfactometry-mass spectrometry; PCA, principal 

component analysis; PLS-DA, partial least squares-discriminant analysis; OPLS-DA, orthogonal partial least squares discriminant 

analysis; AEDA, aroma extract dilution analysis; OAV, odor activity values. 

 

 
 


