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Abstract 24 

 25 

Although non-aureus staphylococci (NAS), such as coagulase-negative staphylococci, 26 

can substantially affect human and animal health, information on NAS species distribution in 27 

poultry slaughterhouses and their antimicrobial resistance (AMR) profiles is limited. In this 28 

study, we analyzed the prevalence of NAS species and AMR profiles of NAS isolates collected 29 

from poultry slaughterhouses, including chicken carcasses and facility environments. In total, 30 

100 NAS isolates were collected from six poultry slaughterhouses in Korea. The AMR patterns 31 

of the NAS species and the major genetic elements associated with AMR phenotypes, 32 

particularly methicillin and fluoroquinolone resistance, were determined. In addition, the 33 

prevalence of classical staphylococcal enterotoxin (SE, sea-see) and toxic shock syndrome 34 

toxin-1 (tst-1) genes among NAS isolates was examined. Among the 10 NAS species, 35 

coagulase-negative Staphylococcus simulans (n = 49, 49%) was the most dominant species, 36 

followed by Staphylococcus agnetis (n = 16, 16%). The multiple drug resistance phenotype 37 

was identified in 67% (n =67) of the NAS isolates, with the highest resistance to erythromycin 38 

(66%) and clindamycin (62%). Furthermore, fluoroquinolone resistance was confirmed in 34 39 

(34%) NAS isolates. Fifteen NAS isolates were mecA-positive, harboring SCCmec I (n = 2), 40 

SCCmec IV (n = 1), or non-typeable SCCmec types (n = 12). Carriage of SE genes was detected 41 

in none of the NAS isolates, and toxic shock syndrome toxin 1 gene (tst1) was detected in only 42 

two CoNS strains. Our results suggest that NAS in poultry slaughterhouses can have potential 43 

role in the maintenance and transmission of AMR 44 

.  45 

                                                          244 words 46 

             Key words non-aureus staphylococci, poultry slaughterhouse, species profiles, 47 

antimicrobial resistance, fluoroquinolone resistance 48 

49 
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Introduction 50 

 51 

Staphylococci are commensal bacteria that colonize on the skin and mucous 52 

membranes of humans and animals (Becker et al., 2014; Casey et al., 2007). However, they 53 

are occasionally implicated in local and systemic infections such as scalded skin syndrome, 54 

gastroenteritis, and toxic shock syndrome (Ladhani et al., 2004; Lowy, 1998). Although 55 

Staphylococcus aureus is most frequently associated with disease outbreaks, recent studies 56 

have revealed that non-aureus staphylococci (NAS) substantially affect human and animal 57 

health (Adkins et al., 2018; Osman et al., 2017; Wuytack et al., 2020). The consumption of or 58 

close contact with raw or undercooked meat and other food products contaminated with 59 

bacteria are the most common transmission routes from livestock to humans (Osman et al., 60 

2017; Osman et al., 2016; Podkowik et al., 2012). As a zoonotic bacterial pathogen, S. aureus 61 

is characterized by the (i) production of coagulase, which converts fibrinogen to fibrin, and 62 

(ii) secretion of toxic shock syndrome toxin-1 (TSST-1) and staphylococcal enterotoxins 63 

(SEs), which cause staphylococcal food poisoning (SFP) (Argudín et al., 2010; Dellaripa, 64 

2000). Although some NAS strains, particularly coagulase-negative staphylococci (CoNS), 65 

have one or more genes encoding various SEs, their pathophysiological roles in SFP remain 66 

unclear (Podkowik et al., 2013; Wisniewski et al., 2023). However, antimicrobial resistance 67 

(AMR) genes in NAS can be horizontally transferred to confer AMR phenotype in other 68 

staphylococci. Notably, studies have revealed a high prevalence of methicillin-resistant S. 69 

aureus (MRSA) and MR-NAS in livestock farms, slaughterhouses, and retail meat (Huber et 70 

al., 2011; Lim et al., 2010; Schnitt et al., 2021; van Cleef et al., 2010). The mecA-containing 71 

staphylococcal cassette chromosome mec (SCCmec) and other mobile genetic elements 72 

(MGEs) carrying AMR genes can be transferred between S. aureus and NAS, which 73 
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normally co-colonize in livestock such as cattle, pigs, goats, sheep, and poultry (Bhargava 74 

and Zhang, 2012; Pyzik et al., 2019; Ray et al., 2016). 75 

Poultry carcasses have been associated with various foodborne pathogens such as 76 

Salmonella spp., Campylobacter spp., and Staphylococcus aureus (Crețu et al., 2015; Crețu et 77 

al., 2012; Crețu et al., 2011). Moreover, poultry is one of the principal reservoirs for 78 

antimicrobial-resistant staphylococci owing to the excessive use of antibiotics in poultry meat 79 

production (Apata, 2009; Diarra and Malouin, 2014). High fluoroquinolone (FQ) resistance in 80 

chicken-associated staphylococci has led to therapeutic dilemmas in both human and veterinary 81 

medicine (Dalhoff, 2012). Although the AMR profiles of S. aureus isolates from poultry and 82 

retail chicken meat are annually monitored in several countries including Korea, the USA, and 83 

the European Union (Abdalrahman et al., 2015; Fessler et al., 2011; Lee et al., 2022; Normanno 84 

et al., 2007), the AMR data for NAS isolates are relatively limited. Several previous studies 85 

have revealed various NAS species with AMR, including Staphylococcus gallinarum, 86 

Staphylococcus xylosus, Staphylococcus simulans, Staphylococcus arlettae, Staphylococcus 87 

chromogenes, Staphylococcus epidermidis, Staphylococcus hyicus, and Staphylococcus lentus 88 

in the poultry food chain (Osman et al., 2016; Pimenta et al., 2021; Pyzik et al., 2019). In 89 

addition to AMR, most genes encoding SEs located on MGEs can be transferred between NAS 90 

and S. aureus, thereby increasing the morbidity and mortality rates of staphylococci (Alibayov 91 

et al., 2014).  92 

Previously, we reported the AMR and SE profiles of NAS isolates from healthy 93 

broilers (Park et al., 2023) and retail chicken meat (Lee et al., 2020) in Korea. However, NAS 94 

species distribution in poultry slaughterhouses and their AMR profiles remain unreported. 95 

Therefore, in the present study, we analyzed the species prevalence, AMR phenotypes, and SE 96 

gene distribution of NAS isolates obtained from poultry slaughterhouses, including chicken 97 

carcasses and facility environments. Furthermore, the major genetic factors associated with 98 
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methicillin and FQ resistance phenotypes were examined using SCCmec typing and quinolone-99 

resistance determining region (QRDR) sequencing.   100 

101 
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Materials and Methods 102 

 103 

Sample preparation  104 

In total, 270 swab samples were collected from six poultry slaughterhouses located in 105 

six Korean provinces from March to December 2019. Swab samples were obtained from 106 

chicken carcasses (n = 240) within 8 h of slaughter before a chilling process; and 107 

slaughterhouse environments (n = 30), including cutting boards, sewage, floors, and tables. 108 

All swabs were kept at 4℃ and delivered to the laboratory within 24 h of sample collection to 109 

isolate staphylococci.  110 

 111 

Isolation and species identification of staphylococci 112 

For NAS isolation, swabs collected were inoculated into 3 mL of tryptic soy broth 113 

(Difco Laboratories, Detroit, MI, USA) supplemented with 10% sodium chloride (TSB-114 

NaCl) and cultured at 37℃ for 18-24 h. Next, 10-𝜇L aliquots of pre-enriched TSB-NaCl 115 

cultures were streaked onto Baird-Parker agar (Difco Laboratories) containing egg yolk 116 

supplements and potassium tellurite. After 24-48 h incubation at 37℃, presumptive 117 

staphylococcal colonies were picked from each agar plate and re-streaked on Baird-Parker 118 

agar for subsequent identification. Individual isolates were subcultured on tryptic soy agar 119 

(Difco Laboratories) at 37℃ for 18 h to extract genomic DNA using a Genmed DNA kit 120 

(Seoul, Korea) based on the manufacturer’s protocols. NAS species were identified using 16S 121 

rRNA sequencing and matrix-assisted laser desorption ionization time-of-flight mass 122 

spectrometry (Bruker Daltonics GmbH, Bremen, Germany).  123 

 124 

Detection of mecA and SCCmec elements typing 125 
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All staphylococcal isolates exhibiting cefoxitin resistance were screened for the 126 

presence of the mecA gene using polymerase chain reaction (PCR), as described previously 127 

(Geha et al., 1994). For mecA-positive isolates, SCCmec types were determined using 128 

multiplex PCR, which amplified the chromosomal cassette recombinase genes and mec 129 

regulatory elements (Kondo et al., 2007).  130 

 131 

Antimicrobial susceptibility assays 132 

To determine the antimicrobial susceptibility phenotype of each NAS isolate, the 133 

standard disc diffusion method was used according to the Clinical and Laboratory Standards 134 

Institute’s (CLSI) and CLSI VET01S guidelines (CLSI, 2015; CLSI, 2022). Fourteen 135 

different antibiotic discs were utilized for the disc diffusion assay on Mueller-Hinton agar 136 

(Difco Laboratories): cefoxitin (FOX, 30 μg), penicillin (PEN, 10 μg), ampicillin (AMP, 10 137 

μg), gentamicin (GEN, 50 μg), ciprofloxacin (CIP, 5 μg), chloramphenicol (CHL, 30 μg), 138 

erythromycin (ERY, 15 μg), fusidic acid (FUS, 50 μg), clindamycin (CLI, 2 μg), mupirocin 139 

(MUP, 200 μg), rifampicin (RIF, 5 μg), sulfamethoxazole-trimethoprim (SXT, 23.75- 1.25 140 

μg), tetracycline (TET, 30 μg), and quinupristin-dalfopristin (SYN, 15 μg).  141 

Susceptibilities to vancomycin (VAN), linezolid (LZD), tigecycline (TEG), and 142 

teicoplanin (TEC) were examined using a standard Etest (bioMérieux, France). Two 143 

reference strains, Staphylococcus aureus ATCC 29213 and S. aureus MW2, were included 144 

for the disc diffusion assay and Etest. 145 

 146 

Detection of quinolone-resistance determining regions (QRDRs) mutations 147 

Fluoroquinolone (FQ)-resistant NAS isolates frequently carry point mutations within 148 

the QRDRs of DNA gyrase (gyrA and gyrB) and topoisomerase IV (parC and parE) (Ito et 149 

al., 1994; Ng et al., 1996). Genomic DNA from each FQ-resistant isolate was subjected to 150 
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PCR amplification using QRDR-specific primer sets (Table S1). The QRDRs-specific primer 151 

sets were designed based on the following published sequences of reference genomes: 152 

Staphylococcus agnetis (NCTC7887, NCBI GenBank accession number UHAH01000002.1), 153 

S. chromogenes (17A, NCBI GenBank accession number NZ_CP031274.1), S. arlettae (P2, 154 

NCBI GenBank accession number AP019698.1), S. lentus (H29, NCBI GenBank accession 155 

number CP059679.1), Staphylococcus nepalensis (JS1, NCBI GenBank accession number 156 

NZ_CP017460.1), S. simulans (MR2, NCBI GenBank accession number NZ_CP016157.1). 157 

Then, the PCR products were sequenced at Bionics (Seoul, Korea). Differences in the amino 158 

acid sequences of the QRDRs were determined using the nucleotide sequences of the PCR 159 

results. Finally, multiple sequence alignments of gyrA, gyrB, parC, and parE genes were 160 

analyzed using the CLUSTALW server (www.genome.jp/tools-bin/clustalw).  161 

 162 

Staphylococcal enterotoxin (SE) gene detection  163 

Multiplex PCR was performed as previously described (Omoe et al., 2005) to 164 

examine the carriage of the toxic shock syndrome toxin-1 gene (tst1) and five classical SE 165 

genes (sea, seb, sec, sed, and see) in the NAS isolates. Five S. aureus reference strains (N315, 166 

MW2, COL, FRI472, and FRI913) were used as positive controls for the SE gene detection.167 
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Results 168 

 169 

Species profiles of the non-aureus staphylococci (NAS) isolates from poultry 170 

slaughterhouses 171 

During the study period, 100 NAS isolates of 10 different species were obtained from 172 

270 swab samples (37.04%, 100/270) collected from six different poultry slaughterhouses 173 

(Figs. 1A and B). Out of the 100 NAS isolates, 91 NAS isolates were obtained from chicken 174 

carcasses, and nine were isolated from the slaughterhouse environments. Based on their 175 

ability to produce coagulase, these NAS isolates were divided into coagulase-variable 176 

(CoVS) (n = 19 isolates) and coagulase-negative staphylococci (CoNS) (n = 81) (Table 1). 177 

While the 19 CoVS isolates comprised only two species of NAS, S. agnetis (n = 17) and S. 178 

chromogenes (n = 2), the 81 CoNS isolates had eight different Staphylococcus species: S. 179 

simulans (n = 49), S. lentus (n = 11), S. arlettae (n = 8), S. xylosus (n = 4), Staphylococcus 180 

sciuri (n = 4), Staphylococcus warneri (n = 3), S. epidermidis (n = 1), and Staphylococcus 181 

urealyticus (n = 1). The two most prevalent NAS species isolated from the chicken carcasses 182 

were S. simulans (49.5%, 45/91 isolates) and S. agnetis (17.6%, 17/91 isolates) (Fig. 1A). 183 

Similarly, the nine NAS isolates from the facility environments were S. simulans (n = 4 184 

isolates), S. arlettae (n = 2), S. lentus (n = 2), and S. agnetis (n=1) (Fig. 1B).  185 

 186 

Detection of mecA and staphylococcal cassette chromosome mec (SCCmec) types of 187 

methicillin-resistant NAS  188 

PCR analysis revealed that none of the CoVS isolates were positive for mecA gene 189 

(Table 1). Among the 81 CoNS isolates, 15 (18.5%) were positive for mecA: S. simulans (n = 190 

8), S. lentus (n = 6), and S. epidermidis (n = 1). Furthermore, SCCmec element typing of the 191 

15 mecA-positive NAS isolates revealed that eight S. simulans isolates had either non-192 
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typeable SCCmec (n = 6) or SCCmec I (n = 2). In addition, all six methicillin-resistant S. 193 

lentus strains contained non-typeable SCCmec elements. One methicillin-resistant S. 194 

epidermis isolate from a chicken carcass sample possessed SCCmec IV. 195 

 196 

AMR profiles of the NAS isolates 197 

Compared with the other antibiotics, the CoVS isolates exhibited higher resistance to 198 

FUS (84.2%, 16/19 isolates), PEN (84.2%, 16/19 isolates), AMP (84.2%, 16/19), GEN 199 

(78.9%, 15/19), and CIP (63.2%, 12/19) (Table 2 and Fig. 2). Although a higher resistance 200 

level to these antibiotics was also observed in CoNS isolates, CoNS exhibited lower 201 

resistance rates to the five antibiotics compared with CoVS isolates. In addition, CoVS 202 

isolates exhibited higher levels of multidrug resistance (MDR) phenotypes (resistant to three 203 

or more classes/subclasses of antimicrobial agents) than CoNS isolates (84.2% vs. 63.0%, 204 

respectively). When the AMR of the dominant CoVS species (S. agnetis) and the two major 205 

species of CoNS (S. simulans and S. lentus) were compared, S. agnetis (82.4%) and S. lentus 206 

(90.9%) exhibited significantly higher degrees of MDR than S. simulans (57.1%) (Table 2). 207 

Fig. 3 illustrates the heterogeneity of the AMR profiles within the four major species of NAS 208 

isolates, S. simulans, S. agnetis, and S. lentus. S. agnetis isolates tended to show high 209 

resistance to AMP, GEN, PEN, CIP, and FUS (Fig. 3A). Interestingly, S. lentus, and S. 210 

simulans isolates exhibited rather distinct AMR profiles (Figs. 3B and C). However, both S. 211 

lentus and S. simulans displayed comparatively high levels of resistance to CHL, CIP, CLI, 212 

and ERY. Notably, S. agnetis and S. lentus isolates exhibited higher levels of CIP resistance 213 

(61.1% and 63.6%, respectively) than S. simulans isolates.  214 

 215 

Mutations in the QRDRs of FQ-resistant NAS isolates 216 
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Among the 100 NAS isolates, 12 CoVS (10 S. agnetis and two S. chromogenes) and 217 

22 CoNS (eight S. simulans, seven S. arlettae, and seven S. lentus) isolates exhibited 218 

resistance to CIP (Table 3). Sequencing analysis of QRDRs within gyrA, gyrB, parC, and 219 

parE revealed that mutations at codon 84 in gyrA (S84L and D84N) and codon 80 in parC 220 

(S80L, T80I, T80R, S80F, and S80Y) were most frequently associated with the CIP-resistant 221 

phenotype of the NAS isolates (Table 3). Unlike point mutations in gyrA and parC, a high 222 

degree of mutation heterogeneity was observed in gyrB and parE within and between 223 

different NAS species (Table 3). Nevertheless, none of the FQ-resistant S. lentus (n = 7) 224 

isolates carried point mutations in gyrB. Similarly, none of the FQ-resistant S. agnetis isolates 225 

harbored point mutations in parE.      226 

 227 

 228 

Detection of SE and TSST-1 genes in NAS isolates 229 

Among the 100 NAS isolates, only two CoNS isolates (one S. simulans and one S. 230 

xylosus) from chicken carcasses were positive for TSST-1 gene. None of the 19 CoVS 231 

isolates were positive for the five classical SE genes and tst1. 232 
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Discussion 233 

 234 

Many recent studies have revealed that NAS are important reservoirs of AMR and 235 

enterotoxin genes, which can be transmitted to other pathogenic bacteria, including more 236 

pathogenic strains of S. aureus. In our previous research, we suggested that NAS in retail 237 

chicken meat can play an important role in the transmission of AMR and enterotoxin genes 238 

(Lee et al., 2020). However, not many studies have investigated the species profiles of 239 

antimicrobial-resistant NAS and their significance in food-related public health.  240 

In the present study, we investigated NAS species distribution and their AMR 241 

profiles in chicken carcasses, facility environments, and poultry slaughterhouse workers in 242 

Korea. Similar to the findings of our previous studies on NAS profiles in broiler farms (Park 243 

et al., 2023) and retail chicken meat (Lee et al., 2020), the prevalence of CoNS (81.0%, 244 

81/100) was considerably higher than that of CoVS (19.0%, 19/100) (Table 1). A higher 245 

prevalence of CoNS compared with CoVS has also been reported in both healthy broilers and 246 

broilers with signs of illness from other countries. In the present study, S. simulans (49.0%, 247 

49/100) and S. agnetis (17.0%, 17/100) were the most frequently identified NAS species in 248 

poultry slaughterhouses; this is consistent with the previously reported high prevalence of S. 249 

agnetis, S. simulans, S. haemolyticus, and S. xylosus in broiler farms (Park et al., 2023). 250 

Sample origin did not affect the species distribution of NAS isolates in chicken carcasses and 251 

facility environments in poultry slaughterhouses (Figs. 1A and B). The four major NAS 252 

species, S. simulans, S. agnetis, S. lentus, and S. arlettae, were commonly identified in both 253 

chicken carcasses and facility environments. These results suggest that broiler-associated 254 

NAS species (Park et al., 2023), both CoVS and CoNS species are potential sources of 255 

contaminants in chicken carcasses and facility environments in poultry slaughterhouses. 256 
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Approximately 20% of all the antibiotics sold in the livestock industry, particularly 257 

FQs, -lactams, and tetracyclines, are consumed in poultry farming in Korea (Lim et al., 258 

2014). Thus, recent studies on livestock-associated antimicrobial-resistant NAS, particularly 259 

methicillin-resistant NAS isolates, have raised significant concerns regarding the 260 

transmission of resistance genes to more pathogenic bacteria in the food production system. 261 

In a previous study in Switzerland (Huber et al., 2011), researchers reported that 52.8% 262 

(38/72) of mecA-positive NAS isolates, i.e., S. lentus (n = 30), S. sciuri (n = 6), and S. 263 

epidermidis (n = 2), were obtained from chicken carcasses. In the present study, mecA-264 

positive NAS isolates (15.0%, 15/100) were present at relatively low levels in poultry 265 

slaughterhouses. As summarized in Table 1, eight mecA-positive but FOX-susceptible NAS 266 

isolates (two S. lentus and six S. simulans) carrying non-typeable SCCmec elements were 267 

identified. Recent studies revealed the mecA-positive but FOX-susceptible phenotype of 268 

staphylococci (Goering et al., 2019; Ho et al., 2020). This discrepancy could be owing to the 269 

altered expression of mecA because of dysregulation in mecR1 (encoding the inducer protein 270 

MecR1), mecI (encoding the repressor protein MecI), or bla regulatory system (blaR1-blaI) 271 

(Liu et al., 2016). In addition, a single-nucleotide insertion within mecA, resulting in the 272 

premature termination of mecA expression, has been identified in S. aureus strains (Kime et 273 

al., 2019).  274 

Largely correlating with the sales amounts of antibiotics in the poultry industry in 275 

Korea, relatively high levels of resistance to -lactams, GEN, TET, and CIP were identified 276 

in NAS isolates, particularly in CoVS isolates. This suggests that antibiotic selective pressure 277 

affect the prevalence of antimicrobial-resistant NAS isolates in poultry slaughterhouses 278 

(Table 2). Furthermore, the high prevalence of FUS resistance in some of NAS isolates, 279 

particularly S. agnetis, S. arlettae, S. lentus, and S. xylosus, may be because of intrinsic FUS 280 

resistance owing to the frequent carriage of fusD and fusF (Hung et al., 2015). Notably, the 281 
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high prevalence of NAS isolates with MDR phenotypes to the antibiotics extensively 282 

consumed in poultry farms suggests that antibiotic selective pressure facilitates the 283 

proliferation of antimicrobial-resistant NAS in broiler farms, and thus, its transmission to 284 

chicken carcasses in slaughterhouses. 285 

The World Health Organization has categorized FQs as the highest-priority critically 286 

important antibiotics (CIAs) (Scott et al., 2019). However, FQ-resistant S. aureus and NAS 287 

strains have been frequently isolated in livestock farms, particularly poultry farms, in Korea. 288 

In this study, 34 FQ-resistant NAS isolates (12 CoVS and 22 CoNS) were identified to harbor 289 

multiple point mutations in the QRDRs of DNA gyrase and topoisomerase IV, except for one 290 

S. arlettae isolate carrying a single point mutation in parC (Table 3). Consistent with the 291 

findings of previous studies of FQ-resistant staphylococci (Takahashi et al., 1998; Wang et 292 

al., 2013), all 34 FQ-resistant NAS isolates possessed point mutations in gyrA (codon 84) or 293 

parC (codon 80). In contrast to the mutations in gyrA and parC, which are frequently 294 

concentrated in codons 84 and 80, respectively, point mutations in gyrB and parE were 295 

identified at various locations in QRDRs. Moreover, previous studies on FQ-resistant 296 

staphylococci (Nakaminami et al., 2014; Yamada et al., 2008) revealed a high degree of 297 

heterogeneity in the point mutations in gyrB and parE. Although major mutations, including 298 

S84L at gyrA, S80L at parC, and D84N at parC, were previously known to be associated 299 

with FQ resistance (Li et al., 1998; Takahashi et al., 1998; Vila et al., 1997), the precise role 300 

of other minor mutations in FQ resistance should be elucidated in the future research.  301 

SEs produced by coagulase-positive S. aureus are a major cause of SFP (Argudín et 302 

al., 2010; Fisher et al., 2018). However, many recent studies have indicated that NAS 303 

isolates, including those from livestock and food products, carry SE genes and are potentially 304 

enterotoxigenic (Mekhloufi et al., 2021; Podkowik et al., 2013). In this study, our results 305 

demonstrate that CoVS isolates from poultry slaughterhouses do not harbor the classical SE 306 
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nor tst-1 genes. Although previous studies have revealed the highest prevalence of sec and 307 

tst1 in CoNS strains (H jek, 1978; Valle et al., 1990), only two tst1-positive (one S. simulans 308 

and one S. xylosus) NAS isolates were detected in the present study. Since SEA and TSST-1 309 

were first detected in CoNS strains isolated from patients with toxic shock syndromes (Crass 310 

and Bergdoll, 1986), potential enterotoxigenic or pathogenic NAS strains carrying SE genes 311 

have been detected in humans (Achek et al., 2018; Banaszkiewicz et al., 2022), livestock 312 

(Ruiz-Ripa et al., 2020; Ü nal and Ç inar, 2012), and ready-to-eat foods (Chajęcka-313 

Wierzchowska et al., 2020; Crass and Bergdoll, 1986; Cunha et al., 2006; Rall et al., 2010; 314 

Zell et al., 2008). Despite the proposed instability of SE genes in CoNS isolates 315 

(Banaszkiewicz et al., 2022), the carriage of SE and TSST-1 genes in NAS isolates from 316 

poultry slaughterhouses should be monitored as a significant threat to food safety.317 

In summary, this is the first report on the species diversity, AMR patterns, and 318 

genetic characteristics of methicillin- and FQ-resistant NAS isolates obtained from poultry 319 

slaughterhouses in Korea. Our findings suggest that (i) the overall species distribution of 320 

NAS isolates in poultry slaughterhouses is similar to that in broiler farms (Park et al., 2023) 321 

in Korea; (ii) MDR phenotypes with relatively high resistance levels of resistance to PEN, 322 

AMP, GEN, CIP, and TET are observed in NAS isolates; (iii) FQ-resistance in NAS isolates 323 

is caused by point mutations occurring at specific locations (gyrA and parC) or rather various 324 

locations (gyrB and parE) of QRDRs; and (iv) the carriage of tst1 only in CoNS isolates, 325 

indicating the extremely low prevalence of the TSST-1 and SE genes in NAS isolates. In 326 

addition, this study underscores a potential role of poultry slaughterhouses in transmission of 327 

antimicrobial-resistant NAS strains to human food chains.  328 

Top combat AMR in poultry industry, a multisectoral approach, including poultry 329 

farms, slaughterhouses, and human workers, is necessary. Improper use of antibiotics and 330 

indiscriminate prescription of antibiotics should be avoided to prevent occurrence and 331 
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amplification of antimicrobial-resistant bacteria in poultry farms. Furthermore, importance of 332 

hygiene measures in slaughterhouses should be emphasized along with a multisectoral 333 

surveillance networks to better detect and mitigate spread of AMR. 334 
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Table 1. Profiles of NAS and SCCmec types of methicillin-resistant NAS strains isolated from poultry slaughterhouses 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1NAS, non-aureus staphylococci; 2ccr, chromosomal cassette recombinase; 3SCCmec, staphylococcal cassette chromosome mec; 4CoVS, coagulase-variable staphylococci; 
5CoNS, coagulase-negative staphylococci; 6NT, non-typeable.  

 

 

NAS1 (n = isolates) 
mecA positive 

(%) 
mec gene ccr2 gene SCCmec3 type 

CoVS4 (19)     

 Staphylococcus agnetis (17) - - - - 

 Staphylococcus chromogenes (2) - - - - 

CoNS5 (81)     

 Staphylococcus arlettae (8) - - - - 

 Staphylococcus epidermidis (1) 1 (100) B A2B2 SCCmec IV 

 Staphylococcus lentus (11) 6 (54.5) 

Multi - 

NT6 

Multi - 

Multi - 

Multi - 

Multi - 

Multi Multi 

 Staphylococcus simulans (49) 8 (16.3) 

B A1B6 NT 

B A1B1 SCCmec I 

B - NT 

B A1B1 SCCmec I 

B - NT 

- A1B6 NT 

E - NT 

A A1B1 NT 

 Staphylococcus sciuri(4) - - - - 

 Staphylococcus urealyticus (1) - - - - 

 Staphylococcus warneri (3) - - - - 

 Staphylococcus xylosus (4) - - - - 
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Table 2. Antimicrobial resistance profiles of NAS strains isolated from poultry slaughterhouses 

NAS2 (n=isolates) 

Number of Antimicrobial Resistance1 (%) 

AMP FOX PEN CHL CIP CLI ERY FUS GEN MUP RIF SXT SYN TET 
MDR3 

(%) 

CoVS4 (19) 

 
Staphylococcus agnetis (17) 

14 

(83.3) 
0 

14 

(83.3) 

2 

(16.7) 

10 

(61.1) 

6 

(38.9) 

6 

(38.9) 

15 

(88.2) 

14 

(77.8) 
0 0 0 0 

4 

(27.8) 

14 

(82.4) 

 Staphylococcus chromogenes 

(2) 

2 

(100) 
0 

2 

(100) 

1 

(50) 

2 

(100) 

2 

(100) 

2 

(100) 

1 

(50) 

1 

(50) 
0 0 0 0 

1 

(50) 

2 

(100) 

CoVS Total 
16 

(84.2) 
0 

16 

(84.2) 

3 

(15.8) 

12 

(63.2) 

8 

(42.1) 

8 

(42.1) 

16 

(84.2) 

15 

(78.9) 
0 0 0 0 

5 

(26.3) 

16 

(84.2) 

CoNS5 (81) 

 
Staphylococcus arlettae (8) 

8 

(100) 
0 

8 

(100) 

7 

(85.7) 

7 

(85.7) 

6 

(75) 

8 

(100) 

8 

(100) 
0 0 0 0 0 

3 

(37.5) 

8 

(100) 

 Staphylococcus epidermidis 

(1) 

1 

(100) 

1 

(100) 

1 

(100) 
0 0 0 

1 

(100) 

1 

(100) 
0 0 0 0 0 0 

1 

(100) 

 
Staphylococcus lentus (11) 

6 

(54.5) 

4 

(36.4) 

6 

(54.5) 

7 

(63.6) 

7 

(63.6) 

7 

(63.6) 

7 

(63.6) 

8 

(72.7) 
0 0 0 

5 

(45.5) 
0 

2 

(18.2) 

10 

(90.9) 

 
Staphylococcus sciuri (4) 

2 

(50) 
0 

2 

(50) 

1 

(25) 
0 0 0 

4 

(100) 
0 0 0 0 0 0 0 

 
Staphylococcus simulans (49) 

5 

(10.2) 

2 

(4.1) 

4 

(8.2) 

26 

(53.1) 

8 

(16.3) 

37 

(75.5) 

38 

(77.6) 

3 

(6.1) 
0 0 0 

10 

(20.4) 
0 

4 

(8.2) 

28 

(57.1) 

 
Staphylococcus urealyticus (1) 0 0 0 

1 

(100) 
0 

1 

(100) 

1 

(100) 

1 

(100) 
0 0 0 0 0 0 

1 

(100) 

 
Staphylococcus warneri (3) 0 0 0 0 0 

3 

(100) 

3 

(100) 
0 0 0 0 0 

3 

(100) 
0 

3 

(100) 

 
Staphylococcus xylosus (4) 

3 

(75) 
0 

4 

(100) 
0 0 0 0 

4 

(100) 
0 0 0 0 0 0 0 

CoNS Total  
25 

(30.9) 

7 

(8.6) 

25 

(30.9) 

42 

(51.9) 

23 

(28.4) 

54 

(66.7) 

58 

(71.6) 

29 

(35.8) 
0 0 0 

15 

(18.5) 

3 

(3.7) 

9 

(11.1) 

51 

(63) 

TOTAL (100) 
41 

(41) 

7 

(7) 

41 

(41) 

45 

(45) 

35 

(35) 

62 

(62) 

66 

(66) 

45 

(45) 

15 

(15) 
0 0 

15 

(15) 

3 

(3) 

14 

(14) 

67 

(67) 
1AMP, ampicillin; FOX, cefoxitin; PEN, penicillin; CHL, chloramphenicol; CIP, ciprofloxacin; CLI, clindamycin; ERY, erythromycin; FUS, fusidic acid; GEN, gentamycin; 

MUP, mupirocin; RIF, rifampin; SXT, trimethoprim-sulfamethoxazole; SYN, quinupristin-dalfopristin; TET, tetracycline; 2NAS, non-aureus staphylococci; 3MDR, multi-

drug resistance; 4CoVS, coagulase-variable staphylococci; 5CoNS, coagulase-negative staphylococci.  
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Table 3. Point mutations within QRDRs of gyrA, gyrB, parC, and parE genes associated with quinolone resistance in the study strains 

NAS2 species 
No. of FQ3-resistant 

isolates (%) 

Mutations in QRDRs1   

gyrA gyrB parC parE 
Tot

al 

Zone 

of 

inhibit

ion 

(mm) 

CoV

S4 

Staphylococcus agnetis 

(17) 
10 (58.8) 

S84L - S80L - 6 
12.8±

1.2 

S84L D562Y S80L - 2 
13.5±

2.1 

S84L F522V, K550R, D562Y S80L - 1 13 

S84L 
F522V, E560Q, D562Y, 

E566Q, E597D 
S80L - 1 13 

Staphylococcus 

chromogenes (2) 
2 (100) 

S84L 
I359V, G375A, I379V, 

T514K 

H77L, G78A, 

S80L 
T348P, D356E, S357A, S360A, D565T 1 

6 

S84L, I131L H511I, T514N S80L, D84Y K568N 1 13 

CoN

S5 

Staphylococcus 

arlettae (8) 
7 (87.5) 

S84L - T80I - 3 6 

- - T80I - 1 6 

S84L - T80I A531Q 1 6 

S84L  T80I A360S 1 6 

S84L 
K554N, R561Q, K565Q, 

K567T 
T80I 

K375T, V382G, K383E, R395G, R406Q, 

K407E, G413S, A418P 
1 6 

Staphylococcus lentus 

(11) 
7(63.6) 

S84L, T172A - S80L - 2 6 

S84L, T172A - S80L Y497T 3 6 

S84L, A162S, 

T172A 
- - Y497T 1 10 

S84L, A162S, 

T172A 
- S80L Y497T 1 9 

  S84L, A173S - F74Y, S80F - 1 14 

Staphylococcus 

simulans (49) 
8 (16.3) 

S84L, A173S - S80Y, D84N - 1 6 

S84L, A173S A512R S80Y, D84N - 1 6 

S84L, A173S A512P S80F, D84N - 1 6 

S84L, A173S - S80Y, D84N L377I 1 6 

S84L, A173S - S80F, D84N N498K, R499S 1 6 

 
S84L, A132S, 

A173S 
E489G, S494T S80I V359I, F365Y, E467D 2 6 
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1QRDRs, quinolone resistance determining regions; 2NAS, non-aureus staphylococci; 3FQ, fluoroquinolone; 4CoVS, coagulase-variable staphylococci; 5CoNS, coagulase-

negative staphylococci.
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FIGURE LEGENDS 

 

 

FIG 1. Species distribution of non-aureus staphylococci (NAS) isolated from chicken 

carcasses (A) and slaughterhouse environments (B) in Korea. In total, 100 NAS isolates from 

10 different species were identified in poultry slaughterhouses in Korea. 
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FIG 2. Antimicrobial resistance patterns of the non-aureus staphylococci (NAS) isolates 

collected from the slaughterhouses in Korea. Antimicrobial resistance phenotypes of 

coagulase-variable staphylococci (CoVS) (A) and coagulase-negative staphylococci (CoNS) 

(B) isolates.  

R, resistant; I, intermediate; S, susceptible 

AMP, ampicillin; PEN, penicillin; CHL, FOX, cefoxitin; FUS, fusidic acid; chloramphenicol; 

CIP, ciprofloxacin; GEN, gentamicin; CLI, clindamycin; ERY, erythromycin; MUP, 

mupirocin; SXT, trimethoprim-sulfamethoxazole; RIF, rifampicin; SYN, quinupristin-
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dalfopristin; TET, tetracycline; VAN, vancomycin; LZD, linezolid; TEC, teicoplanin; TGC, 

tigecycline. 
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FIG 3. Antimicrobial resistance patterns of the major non-aureus staphylococci (NAS) 

collected from poultry slaughterhouses. Antimicrobial resistance profiles of S. agnetis (A), S 

lentus (B), and S. simulans (C) isolates. 
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Table S1. Primers for detecting QRDRs mutations in fluoroquinolone-resistant NAS 

Target gene Species 
 

Primer sequence ((5'→3') 
Amplicon size 

(bp) 
PCR condition 

gyrA All species 
F AATGAACAAGGTATGACACC 

368 95℃ 5 min + 28X (95 °C 30 sec + 50 °C 30 sec +72 °C 40sec) + 72 °C 5 min 
R GCGATACCTGATGCACCATT 

gyrB 

Staphylococcus 

agnetis 

F AGTGACACGTCGTAAGTCGG 
612 

95℃ 5 min + 28X (95 °C 30 sec + 53 °C 30 sec +72 °C 40sec) + 72 °C 5 min 

R TGAAGCATCGCACGGTTTTC 

Staphylococcus 

arlettae 

F TGGCTCGTGTCATTGTCGAA 
790 

R GTCGCATACACTGCGTTGTC 

Staphylococcus 

nepalensis 

F AAAAAGCGCGTGAAGTGACA 
696 

R GGTTCTCAACAACATCGCCC 

Staphylococcus 

chromogenes 

F GAAACACGGGGACCCTCAAT 
545 

95℃ 5 min + 28X (95 °C 30 sec + 54 °C 30 sec +72 °C 40sec) + 72 °C 5 min 
R TTCGGATATGGGCACCATCG 

Staphylococcus 

lentus 

F AGAGCTCGTCTAGCAGCGAA 
681 

R CGTTTCGTCAGCTTCTATCGC 

Staphylococcus 

simulans 

F CCTCTCGTGCACGTATCGCA 
300 95℃ 5 min + 28X (95 °C 30 sec + 48 °C 30 sec +72 °C 40sec) + 72 °C 5 min 

R TGATATGCGCACCATCCACA 

parC 

Staphylococcus 

agnetis 

F TTACCTGATGTACGCGACGG 
922 

95℃ 5 min + 28X (95 °C 30 sec + 54 °C 30 sec +72 °C 40sec) + 72 °C 5 min 
R GTCGACCTTCACTGATCGCT 

Staphylococcus 

lentus  

F ATCCAAGACCGAGCACTTCC 
575 

R CCGGTAGGGAAATCAGGTCC 

Staphylococcus 

arlettae 

F ACCCGATGTACGTGATGGTT 
257 95℃ 5 min + 28X (95 °C 30 sec + 53 °C 30 sec +72 °C 40sec) + 72 °C 5 min 

R ATAGCTGCTGCAGGGTCATT 

Staphylococcus 

chromogenes 

F CGTCGGGGATGTCATTGGAC 
162 

95℃ 5 min + 28X (95 °C 30 sec + 50 °C 30 sec +72 °C 40sec) + 72 °C 5 min 
R GTATAACGCATCGCAGCAGG 

Staphylococcus 

nepalensis 

F TTGGCGACCGATTTGGTAGAT 
309 

R TAGCTGCTGCTGGATCGTTA 

Staphylococcus 

simulans 

F GTGCCAAAACAGTCGGTGAT 
364 95℃ 5 min + 28X (95 °C 30 sec + 52 °C 30 sec +72 °C 40sec) + 72 °C 5 min 

R AAGTTGTGCGGCGGAATATC 
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Target gene Species 
 

Primer sequence ((5'→3') 
Amplicon size 

(bp) 
PCR condition 

parE 

Staphylococcus 

agnetis 

F GGGTGGGTCTGCAAAACTTG 
308 

95℃ 5 min + 28X (95 °C 30 sec + 52 °C 30 sec +72 °C 40sec) + 72 °C 5 min 
R GTAACGCGATAAACACGCGA 

Staphylococcus 

nepalensis  

F AGCCCAACAAGCAAGAGAAG 
649 

R TGTCTCTGGGTTCATTGTCGT 

Staphylococcus 

arlettae 

F TTAGGTACACCGGAAGCACG 
566 

95℃ 5 min + 28X (95 °C 30 sec + 53 °C 30 sec +72 °C 40sec) + 72 °C 5 min 

R ACACGTCCTGCCAACACTAA 

Staphylococcus 

chromogene 

F TAGGGACACCTGAAGCGAGA 
851 

R ACGACGTGGGGCAACTTTAT 

Staphylococcus 

simulans  

F CGCGTCGCATTGGTGAATTA 
628 

R CCATCTGTATCGGCATCGGT 

Staphylococcus 

lentus 

F CGATTAAAGCACAACAAGCAAG 
393 

R GCGCACCATCAGTATCAG 
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Table S2. Antimicrobial resistance profiles of 100 NAS strains isolated from poultry 

slaughterhouses 
 

NAS species Strain AMR1 profiles  NAS species Strain AMR profiles 

Staphylococcus 

agnetis 

(n = 17) 

CCSM-112 AMP-PEN-CIP-FUS-GEN  

Staphylococcus 

simulans 

(n = 49) 

CSSM-131 CHL-CIP-CLI-ERY-TET 

CCSM-151 CIP-FUS  CCSM-162 - 

CCSM-1101 CHL-FUS  CCSM-1191 - 

CCSM-1112 CHL-FUS  CSSM-1101 CIP-CLI-ERY 

CSSM-231 AMP-PEN-FUS-GEN  CSSM-1151 CHL-CLI-ERY 

CSSM-241 AMP-PEN-FUS-GEN  CSSM-162 CIP-TET 

CSSM-2101 AMP-PEN-FUS-GEN  CSSM-182 AMP-PEN-CLI-ERY 

CSSM-2111 AMP-PEN-CIP-FUS-GEN  CSSM-1162 CIP-TET 

CGSM-1131EA AMP-PEN-CIP-CLI-ERY-FUS-GEN  CSSM-1202 AMP-PEN-CLI-ERY 

CGSM-132EB AMP-PEN-CLI-ERY-GEN-TET  CSSE-101 AMP-PEN-CHL-CLI-ERY 

CGSM-162EA AMP-PEN-CIP-CLU-ERY-FUS-GEN  CSSM-251 AMP-FOX 

CGSM-172EA 
AMP-PEN-CIP-CLI-ERY-FUS-GEN-

TET 

 
CSSM-291 CHL-CIP 

CGSM-1102EA AMP-PEN-CIP-FUS-GEN  CSSM-2161 CHL-CIP-ERY-TET 

CGSM-1102EA 
AMP-PEN-CIP-CLI-ERY-FUS-GEN-
TET 

 
CSSM-2171 AMP-PEN 

CGSM-1122EA AMP-PEN-CIP-FUS-GEN  CSSM-2181 CHL 

CGSM-1172EA AMP-PEN-CIP-FUS-GEN  CSSM-2191 FOX-FUS 

CGSE-103EB AMP-PEN-CLI-ERY-GEN-TET  CSSM-2201 - 

Staphylococcus 

chromogenes 

(n = 1) 

CCSM-1181 AMP-PEN-CHL-CIP-CLI-ERY-TET  CGSM-141EB CIP-CLI-ERY 

CGSM-191EA AMP-PEN-CIP-CLI-ERY-FUS-GEN  CGSM-151 CLI-ERY 

Staphylococcus 

alrettae 

(n = 8) 

CSSE-103 
AMP-PEN-CHL-CIP-CLI-ERY-FUS-
TET 

 
CGSM-151-10 CLI-ERY 

CSSM-161 AMP-PEN-CHL-CIP-CLI-ERY-FUS  CGSM-161 CHL-CLI-ERY-TET 

CSSM-172 
AMP-PEN-CHL-CIP-CLI-ERY-FUS-

TET 

 
CGSM-161-10 CHL-CIP-ERY-FUS-SXT 

CSSM-111 AMP-PEN-CHL-CIP-ERY-FUS  CGSM-181 CLI-ERY 

CSSM-1132 AMP-PEN-CHL-CLI-ERY-FUS-TET  CGSM-181-10 CHL-CLI-ERY-FUS 

CSSM-1142 AMP-PEN-CIP-CLI-ERY-FUS  CGSM-191EB CLI-ERY 

CSSM-1192 AMP-PEN-CHL-CIP-CLI-ERY-FUS  CGSM-1101 CHL-CLI-ERY 

CSSE-102 AMP-PEN-CHL-CIP-ERY-FUS  CGSM-1121-10 CHL-CLI-ERY 

Staphylococcus 

epidermidis 
(n = 1) 

CJSM-112 AMP-FOX-PEN-ERY-FUS 

 

CGSM1131-10 CHL-CLI-ERY 

Staphylococcus 
lentus 

(n = 11) 

CSSM-191 PEN-CHL-CIP-CLI-ERY-FUS  CGSM-1141-10 CLI-ERY 

CSSM-1112 AMP-FOX-PEN-CHL-CIP  CGSM-1151-10 CHL-CLI-ERY-SXT 

CSSM-1122 CHL-CIP-CLI-ERY-TET  CGSM-1151EA CHL-CLI-ERY 

CSSE-104 FUS  CGSM-1161-10 CLI-ERY 

CSSM-221 AMP-FOX-PEN-CIP-ERY-FUS-SXT  CGSM-1171-10 CHL-CLI-ERY-SXT 

CSSM-2131 AMP-PEN-CLI-ERY-FUS  CGSM-1181-10 CHL-CLI-ERY-SXT 

CSSM-2141 AMP-FOX-PEN-CHL-FUS-SXT  CGSM-1191-10 CHL-CLI-ERY-SXT 

CGSM-1111-10 CIP-CLI-ERY-SXT-TET  CGSM-1191 CHL-CLI-ERY 

CGSM-1181 CHL-CIP-CLI-FUS-SXT  CGSM-1201-10 CHL-CLI-ERY 

CGSE-102-10 CHL-CLI-ERY-FUS-SXT  CGSM-112-10 CLI-ERY 

CSSM-151 
AMP-FOX-PEN-CHL-CIP-CLI-ERY-
FUS 

 
CGSM-142EA-10 CHL-CLI-ERY-SXT 

Staphylococcus 
sciuri 

(n = 4) 

CSSM-181 AMP-PEN-FUS  CGSM-142 CLI-ERY 

CCSM-172 FUS  CGSM-162EA-10 CLI-ERY 

CSSM-122 CHL-FUS  CGSM-192EB CHL-CLI-ERY 

CSSM-141 AMP-PEN-FUS  CGSM-1142-10 CHL-CLI-ERY 

Staphylococcus 

warneri 

(n = 3) 

CSSM-1181 CLI-ERY-SYN  CGSM-1152 CHL-CLI-ERY-SXT 

CSSM-112 CLI-ERY-SYN  CGSM-1182 CHL-SXT 

CSSM-1102 CLI-ERY-SYN  CGSE-102 CHL-CLI-ERY-SXT 

Staphylococcus 
xylosus 

(n = 4) 

CSSM-1182 AMP-PEN-FUS  CGSE-103-10 CLI-ERY 

CSSM-1171 AMP-PEN-FUS  CGSE-105 CHL-CLI-ERY-SXT 

CSSM-132 AMP-PEN-FUS  CSSM-152 CIP-CLI-ERY 
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CSSM-1152 PEN-FUS 

 Staphylococcus 

ureilyticus 
(n = 1) 

CSSM-261 CHL-CIP-CLI-ERY-FUS 

1AMR, antimicrobial resistance; AMP, ampicillin; FOX, cefoxitin; PEN, penicillin; CHL, chloramphenicol; CIP, 

ciprofloxacin; CLI, clindamycin; ERY, erythromycin; FUS, fusidic acid; GEN, gentamycin; MUP, mupirocin; 

RIF, rifampin; SXT, trimethoprim-sulfamethoxazole; SYN, quinupristin-dalfopristin; TET, tetracycline. 

 

 

 

 

 

 
 


