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Abstract 14 

Animal-derived foods, such as meat and dairy products, are prone to spoilage by 15 

psychrotrophic bacteria due to their high-water activity and nutritional value. These bacteria 16 

can grow at refrigerated temperatures, posing significant concerns for food safety and quality. 17 

Psychrotrophic bacteria, including Pseudomonas, Listeria, and Yersinia, not only spoil food 18 

but can also produce heat-resistant enzymes and toxins, posing health risks. This review 19 

examines the characteristics and species composition of psychrotrophic bacteria in animal-20 

derived foods, their impact on food spoilage and safety, and contamination patterns in various 21 

products. It explores several nonthermal techniques to combat bacterial contamination as 22 

alternatives to conventional thermal methods, which can affect food quality. This review 23 

highlights the importance of developing nonthermal technologies to control psychrotrophic 24 

bacteria that threaten the cold storage of animal-derived foods. By adopting these technologies, 25 

the food industry can better ensure the safety and quality of animal-derived foods for 26 

consumers. 27 

 28 

Keywords: Animal-derived foods, Psychrotrophic bacteria, Prevalence, Nonthermal 29 

techniques, Food safety 30 

  31 



 

3 

 

Introduction 32 

Animal-derived foods, such as meat, milk, and their processed products, generally have high 33 

water activity and nutritional value. Therefore, they are highly susceptible to spoilage by 34 

microorganisms, especially pathogenic bacteria (Odeyemi et al., 2020; Saha et al., 2024; Tapia 35 

et al., 2020; Yuan et al., 2019). A cold chain system is the simplest way to control the freshness 36 

and microbiological safety of animal-derived foods. By applying this system, food quality is 37 

maintained by controlling the temperature at a low level during the entire process of harvesting 38 

fresh foods from the production site and then storing and transporting them to the final 39 

consumption site (Montanari, 2008; Ndraha et al., 2018). However, this approach is not perfect, 40 

as some microorganisms survive and multiply even at low temperatures. Low-temperature 41 

storage improves food storability; however, contamination with psychrotrophic bacteria may 42 

make this impossible (Chen et al., 2020). 43 

Psychrotrophic bacteria, defined as cold-tolerant bacteria, have the ability to grow at 44 

temperatures below 7°C, such as those found in refrigerated conditions. These bacteria are 45 

known for causing spoilage in food products, especially animal-derived foods (Moyer et al., 46 

2017; Tatini and Kouppi, 2002). Psychrotrophic bacteria can grow at low temperatures, 47 

although their growth is limited to a maximum temperature of approximately 20°C. Typically, 48 

these bacteria do not thrive over 35°C (Kanekar and Kanekar, 2022). Thus, they appear to be a 49 

subgroup of mesophiles, whose optimum growth range is between 30°C to 40°C. However, 50 

they are not a subgroup of psychrophiles, which prefer much colder environments, typically 51 

below 15°C (Cavicchioli, 2016). During storage at low temperatures, psychrotrophic bacteria 52 

that adapt to the low temperatures thrive better than mesophilic bacteria, leading to an increase 53 

in their cell population (Samaržija et al., 2012; Wickramasinghe et al., 2019). Moreover, 54 

compared to the mesophilic bacteria in raw milk, the quantity of psychrotrophic bacteria 55 
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increased by over 10%. Psychrotrophic bacteria can produce enzymes related to heat resistance 56 

(e.g., proteolytic enzymes, lipolytic enzymes, and phospholipases), some of which have 57 

antibiotic resistance or the ability to produce toxins. Thus, psychrotrophic bacteria proliferate 58 

at low temperatures and not only spoil food but can also be difficult to inactivate through heat 59 

treatment (sterilization process) and can have adverse effects on human health. 60 

Therefore, in this review, we aimed to determine the growth characteristics and species 61 

composition of psychrotrophic bacteria that are commonly observed in animal-derived foods 62 

and to check their contamination (distribution) status. In addition, we proposed a technique for 63 

reducing the number of psychrotrophic bacteria that can be applied to animal-derived food. 64 

 65 

Characteristics of psychrotrophic bacteria 66 

Psychrotrophic bacteria enter food from their mesophilic habitats and continue to grow at a 67 

slow pace in refrigerated environments. There are several reasons why psychrotrophic bacteria 68 

can continue to survive and grow even at low temperatures. First, they can maintain the activity 69 

of various enzymes involved in metabolism even under cold conditions. These bacteria possess 70 

enzymes that can be activated at low temperatures, and they provide thermolability and 71 

increase complementarity between the substrate and the active site, thereby providing high 72 

specific activity at low temperatures (Cavicchioli et al., 2002; Chattopadhyay, 2006; d’Amico 73 

et al., 2002). As a result, the activation energy is lowered, helping to maintain the substrate-74 

enzyme reaction even at low temperatures (De Maayer et al., 2014). Second, they can maintain 75 

the membrane fluidity even at low temperatures due to their ability to regulate the composition 76 

of the cell membranes. The cell membrane transmits various signals and exchanges substances, 77 

especially nutrients. Therefore, cellular survival is highly dependent on the fluidity of the cell 78 

membrane (Moyer et al., 2017; Najjar et al., 2007; Wang et al., 2016). The membrane fluidity 79 



 

5 

 

is determined by composition of the phospholipid bilayer comprising the cell membrane, which 80 

is odd-numbered, unsaturated, and anteiso fatty acids (Hagve, 1988; Yoon et al., 2015). 81 

Especially, polyunsaturated fatty acids (PUFAs) had a low melting point, thus controlling the 82 

amount of PUFAs at low temperatures can be a good way to maintain membrane fluidity 83 

(Casanueva et al., 2010; Hassan et al., 2020a). Moreover, a-C15:0, an anteiso fatty acid, plays a 84 

key role in bacterial survival at low temperatures; for example, a-C15:0 is a major component of 85 

bacteria living in the Antarctic region (Chattopadhyay and Jagannadham, 2003). In addition to 86 

changes in the composition of fatty acids in the cell membrane, changes in various transport 87 

proteins, which play a role in transporting substances into and out of the cytoplasm, also occur 88 

in the cell membrane. Psychrotrophic bacteria upregulate the expression of some of these 89 

proteins to ensure smooth transport of substances even at low temperatures (De Maayer et al., 90 

2014). Third, they have or can uptake some substances that help them survive at low 91 

temperatures, such as antifreeze proteins (AFPs) and compatible solutes. AFPs, possess by 92 

psychrotrophic bacteria, which control the expression of proteins related to cold and heat shock, 93 

or by switching to a viable but nonculturable state (Chattopadhyay, 2006). They can prevent 94 

freezing or thawing damage to bacteria by inhibiting the growth of ice crystals at low 95 

temperatures (Celik et al., 2013). Psychrotrophic bacteria can respond to low temperatures by 96 

accumulating compatible solutes in the cytoplasm to increase the concentration of solutes and 97 

thereby increasing osmotic pressure (Casanueva et al., 2010). For example, glycine betaine, a 98 

type of compatible solute, is a substance that L. monocytogenes can synthesize, and its synthesis 99 

becomes active at low temperatures, which can stimulate the growth of L. monocytogenes at 100 

low temperatures (Beumer et al., 1994; Zeisel et al., 2003; Chan and Wiedmann, 2008). It 101 

should be remembered that all of the previously mentioned events are regulated by gene 102 

expression. 103 
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Psychrotrophic bacteria are the main cause of the spoilage of chilled and frozen foods derived 104 

from animals, including raw or cooked meat, dairy products, butter, fresh or cooked seafood, 105 

and vegetables (Wei et al., 2019). The most common psychrotrophic bacteria found in animal-106 

derived food are Pseudomonas, Listeria, Yersinia, Serratia, Aerococcus, Acinetobacter, and 107 

Flavobacterium (Chen et al., 2020; Ribeiro Júnior et al., 2018; Yuan et al., 2017). Pseudomonas 108 

is the main bacterium that causes meat spoilage because it produces protein and fat hydrolases, 109 

biosurfactants, and colors (Rouger et al., 2018). Dhama et al. (2013) reported that meat and 110 

meat products, and dairy products are common sources of Listeria monocytogenes, an 111 

intracellular gram-positive bacterium that may survive and grow under refrigeration.  112 

 113 

Contamination of animal-derived food due to psychrotrophic bacteria 114 

Animal-derived foods often contaminated by psychrotrophic bacteria, including Listeria, 115 

Pseudomonas, and Yersinia. Numerous studies have reported cases of contamination in a 116 

variety of animal resources, including dairy products (milk and cheese), meat (poultry, pork, 117 

and beef), and animal-derived products (Table 1). Despite not being classified as a 118 

psychrotrophic bacterium, Clostridium has been commonly detected in animal-derived foods 119 

stored at low temperature. 120 

Listeria monocytogenes 121 

Listeria spp. have been identified in various animal-derived food sources across different 122 

regions, highlighting their prevalence in the food chain and their potential risks to public health. 123 

Particularly concerning for animal-derived food safety is the fact that L. monocytogenes can 124 

grow at refrigerated conditions. Raw milk and cheese (Akrami-Mohajeri et al., 2018; Costanzo 125 

et al., 2020; Rahimi et al., 2010), meats (Li et al., 2018; Oswaldi et al., 2021), and ready-to-eat 126 

(RTE) meat products (Calvo-Arrieta et al., 2021; Meza-Bone et al., 2023) are the most common 127 
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animal-derived foods contaminated with L. monocytogenes. In Syria, research has shown that 128 

11.0% of raw milk samples tested positive for Listeria spp. (Al-Mariri et al., 2013). In Egypt, 129 

Listeria spp. were found in cheese and raw milk at rates ranging from 3.3 to 6.6% (Ismaiel et 130 

al., 2014). In Turkey, Kahraman et al. (2010) found that 4.8% of L. monocytogenes was detected 131 

in white cheese samples, whereas processed cheese samples had a detection rate of 1.4%. In 132 

Mexico, L. monocytogenes was detected in 9.3% of queso fresco, 12% of adobera, and 6% of 133 

panela cheese, all of which are type of fresh cheese (Beltran et al., 2015; Torres-Vitela et al., 134 

2012). In South Africa, L. monocytogenes was detected in a range of meat and meat products 135 

obtained from cattle, pork, sheep, game meat, and poultry (Matle et al., 2019). In this study, L. 136 

monocytogenes were found in 10.1% of uncooked whole meat, 13.5% of RTE meat products, 137 

and 19.5% of uncooked processed meat. In Spain, Vitas and Garcia-Jalon (2004) analyzed 396 138 

meat product samples obtained from 55 small meat-processing plants, and L. monocytogenes 139 

were detected in 36.1% of poultry meat, 34.9% of minced pork and beef. In Quevedo, a city in 140 

Ecuador, 16.3% of L. monocytogenes was present in RTE meat products, including grilled 141 

hamburger meat, mortadella, and salami. The concentration of L. monocytogenes ranged from 142 

4 to 6 Log CFU/g, or possibly much higher (Meza-Bone et al., 2023).  143 

Pseudomonas spp. 144 

Pseudomonas is a prevalent member of the microbiota in various animal-derived foods, 145 

including pork (Bruckner et al., 2012), chicken (Elbehiry et al., 2022; Wu et al., 2023), beef 146 

(Ercolini et al., 2009), and milk (Yang et al., 2020). Wu et al. (2023) identified 109 P. 147 

aeruginosa isolates, which constituted 42.1% of 259 samples collected across six districts in 148 

Beijing, China. Especially, 91 isolates from chicken samples (54.2%) and 18 from pork samples 149 

(19.8%). Similarly, Mahato et al. (2020) described that P. aeruginosa was detected in 46.7% of 150 

chicken meat samples. Among the 370 meat and meat product samples analyzed by Rezaloo et 151 
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al. (2022), 29 samples were contaminated with P. aeruginosa. Notably, imported frozen beef 152 

harbored the highest prevalence (20%), followed by frozen beef (13.33%) and fresh beef 153 

samples (5.0%). Benie et al. (2017) reported that the prevalence of P. aeruginosa among 154 

smoked fish, fresh fish, and beef samples was 23.57%, 37.69%, and 53.04%, respectively. 155 

Furthermore, P. aeruginosa prevalence among sausage, luncheon meat, beef burger, and frozen 156 

burger samples was 8.33%, 18.3%, 1.67%, and 4.0%, respectively (Hassan et al., 2020b; Sofy 157 

et al., 2017). In the dairy foods, P. aeruginosa was detected in 70.0% of milk samples and 24.0% 158 

of samples collected from a milk tank at a dairy cattle farm in Egypt (Aziz et al., 2022). 159 

Additionally, Yang et al. (2020) isolated 153 Pseudomonas colonies from 20 raw milk samples 160 

in China and classified 31 strains as P. fluorescens and 18 as P. lurida. Carminati et al. (2019) 161 

found that Pseudomonas spp. was isolated from 50.0% of milk and 15.0% of cheese samples, 162 

with concentrations between 3.45 and 4.05 Log CFU/mL or g. Similarly, Arslan et al. (2011) 163 

reported that 22.9% of Pseudomonas spp. was isolated from 140 homemade white cheese 164 

samples, with the dominant isolate being P. pseudoalcaligenes (15.0%), followed by P. 165 

alcaligenes (5%), P. aeruginosa (1.4%), and P. fluorescens biovar V (0.7%). Furthermore, 166 

certain Pseudomonas species, including potentially pathogenic ones like P. fulva, P. aeruginosa, 167 

and P. putida have been found in the fecal samples of healthy animals. A study analyzing 704 168 

animal fecal samples identified 133 isolates of Pseudomonas spp. belonging to 23 different 169 

species, recovered from 46 samples (6.5%) (Ruiz-Roldan et al., 2020). 170 

Yersinia enterocolitica 171 

Yersinia, particularly Y. enterocolitica, has been isolated and found to contaminate various 172 

types of animal-derived foods, such as raw and undercooked pork meats, milk, and dairy 173 

products (Ali et al., 2021). Yersinia presence in animal-derived foods poses significant public 174 

health risks as it can cause yersiniosis, which can range from mild self-limiting gastroenteritis 175 
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to more severe illnesses, including septicemia and yersinia enterocolitis (Hordofa, 2021). 176 

Swine serves as the main reservoir for Y. enterocolitica, with pathogenic strains found in swine 177 

and pork products are most commonly reported in human illnesses (MacDonald et al., 2012). 178 

Further food-producing animals that have been linked to Y. enterocolitica include sheep, poultry, 179 

and cattle. Palau et al. (2024) isolated Y. enterocolitica from 53 (75.7%) of 70 samples, 180 

including 37 from 50 chicken (74%), 8 from 10 pork (80%), and 8 from 10 salmon (80%). 181 

Similarly, Davies et al. (2001) found Y. enterocolitica in 80% of European salmon products. In 182 

France, Y. enterocolitica was found in 5.9% of chicken and 5.2% of pork samples (Esnault et 183 

al., 2013). Furthermore, Soltan Dallal et al. (2010) recovered Yersinia spp. from 16% of 379 184 

samples, with 21.6% from chicken and 10% from beef. The detection rates of Y. enterocolitica 185 

in chicken and beef were 16% and 9.5%, respectively. In the dairy foods, Y. enterocolitica was 186 

detected in 12.2% of dairy products made from raw milk, 27.3% of raw cow milk, and 25% of 187 

raw goat milk collected from Apulia and Basilicata regions in Southern Italy (Mancini et al., 188 

2022). Ahmed et al. (2019) reported that Y. enterocolitica was isolated from raw milk and dairy 189 

products in 10% of examined samples. Notably, the highest isolation rate was 22% from raw 190 

milk, followed by 12%, 4%, and 2% from fermented milk, pasteurized milk, and ripened salted 191 

cheese, respectively. Additionally, in Iran, Y. enterocolitica was isolated from 4.3% of bulk raw 192 

milk samples including cow, sheep, and goat milk (Jamali et al., 2015). 193 

Clostridium spp. 194 

Clostridium spp. is generally not considered psychrotrophic bacteria, however, it is notable for 195 

their ability to produce endospores that can endure diverse environmental conditions, including 196 

cold temperatures. Clostridium botulinum and Clostridium perfringens are recognized for their 197 

potential to induce foodborne illnesses through toxins or spores (Grenda et al., 2017). 198 

Additionally, C. botulinum can be found in honey as dormant spores. The low water activity 199 
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and pH (acidic) of honey, which generally inhibit the growth of many bacteria, did not affect 200 

C. botulinum spores. Grenda et al. (2018) reported a 2.1% prevalence of C. botulinum in honey 201 

samples in Poland. Additionally, Maikanov et al. (2019) found that C. botulinum was isolated 202 

in only 0.5% of the samples, and C. perfringens was isolated from 18 (9%) of the 197 honey 203 

samples. One incidence of newborn botulism was reported in the United Kingdom in 2001, and 204 

it seemed that the cause was powdered infant formula contaminated with C. botulinum spores 205 

(Brett et al., 2005). According to Barash et al. (2010), 78% of the powdered infant formula 206 

samples contained clostridial spores, specifically C. sporogenes. The isolation of clostridial 207 

spores indicates that neurotoxic clostridial spores may be found in these products. In Italy, 208 

clostridial spores were detected in 99% of the 527 analyzed sheep milk samples. Among these 209 

samples, 86% had spore concentrations higher than the 1,000 spores/L (Turchi et al., 2016). 210 

Furthermore, C. perfringens was found in 98.7% of raw milk in tanks and 100% of curd 211 

samples used for Grana Padano cheese production in Northern Italy (Feligini et al., 2014). In 212 

meat and meat products, C. perfringens was detected in 50% of beef, 22.5% of lamb, 27.5% of 213 

ground beef, and 40% of minced lamb by Issimov et al. (2022). Shaltout et al. (2017) reported 214 

that C. perfringens was detected in 15.0% of beef and chicken before and after cooking, 215 

represented by 24% of raw chicken, 12% of cooked chicken, 16% of raw beef, and 8% of 216 

cooked beef samples. 217 

 218 

Reduction of psychrotrophic bacteria in animal-derived foods 219 

Thermal technologies have been used to deactivate microorganisms present in animal-derived 220 

food products. However, these techniques have a negative effect on the nutritional and sensory 221 

values of the treated food products (Jauhar et al., 2020). Conventional decontamination 222 

technologies for meat and meat products include heat processing, chilled storage, vacuum 223 
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packing, and chemical preservation. However, the use of heat during processing might reduce 224 

the nutritional value and sensory characteristics, while chemically treated products might show 225 

significant residue deposition (Jadhav et al., 2021). To eliminate pathogenic bacteria from 226 

animal-derived foods without heating and affecting the quality of the food, nonthermal 227 

techniques have been presented as alternatives to conventional pasteurization (Lee and Yoon, 228 

2024). The various specific nonthermal techniques are described below. 229 

Use of gas 230 

Each microorganism has its own unique oxygen requirement, and therefore, the growth of 231 

microorganisms can be controlled by changing the air composition. One method of adjusting 232 

the composition of air is the modified atmosphere packaging (MAP). This method particularly 233 

focuses on aerobic microorganisms because it replaces oxygen in the air with carbon dioxide 234 

or nitrogen (Farber et al., 2003; Kader, 1986). It not only inhibits the growth of aerobic 235 

microorganisms, but also prevents rancidity of fat caused by oxygen, thus it can be effectively 236 

applied to meat products containing fat. As an example, Y. enterocolitica and L. monocytogenes 237 

might survive in MAP foods between 0 to 1°C (Barakat and Harris, 1999; Hudson et al., 1994). 238 

When pure nitrogen gas was injected into raw milk, the Pseudomonas growth was significantly 239 

limited, and when carbon dioxide was added to raw milk, the microbiological quality was 240 

maintained for a long period of time, making it possible to produce milk with a long shelf life 241 

(Munsch-Alatossava et al., 2010; Vianna et al., 2012; Yuan et al., 2019). In contrast, Huang et 242 

al. (2020) reported higher concentrations of Pseudomonas in roasted chicken stored under 243 

MAP (40% CO2/60% N2) conditions. Also, it has limitations in that spoilage caused by lactic 244 

acid bacteria (LAB) is occasionally observed. LAB lowers pH and causes muscle tissue 245 

destruction and moisture lose in meat stored under high CO2 level (Wang et al., 2017; 246 

Wickramasinghe et al., 2019).  247 

https://www.sciencedirect.com/science/article/pii/S002364382301126X#bib24
https://www.sciencedirect.com/science/article/pii/S002364382301126X#bib24
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Additionally, supercritical carbon dioxide (SC-CO2) can be used to control pathogenic bacteria 248 

in animal-derived foods. SC-CO2 diffuses CO2 to lower cytoplasmic pH and extracts important 249 

components to change microbial cell membranes (Guerrero et al., 2017). It is currently not 250 

known how SC-CO2 exhibits bactericidal activity, potentially, might depend on variables 251 

including pressure, temperature, and exposure time. According to the previous studies, SC-CO2 252 

might enhance membrane fluidity and permeability, as well as its ability to extract membrane 253 

components such as phospholipids (Budisa et al., 2014; Jauhar et al., 2020). Wei et al. (1991) 254 

initially investigated the inactivation of L. monocytogenes and Salmonella in spiked chicken 255 

meat using SC-CO2 treatment, and 1-2 Log CFU/g of L. monocytogenes and Salmonella were 256 

reduced at 13.7 MPa and 35°C for 2 h. Furthermore, Ferrentino et al. (2013) reported that the 257 

growth of L. monocytogenes in dry-cured ham was reduced by 3 Log CFU/g at 45°C and 12 258 

MPa for 5 min, and by 7 Log CFU/g at 50°C and 12 MPa for 15 min. 259 

The application of cold plasma treatment has generated significant attention as a low-energy, 260 

non-thermal, and eco-friendly technique (Koddy et al., 2021). Previous studies have shown that 261 

the application of cold plasma can extend the storage duration of food products by inactivating 262 

bacteria and enzymes, while maintaining the overall quality of the food (Koddy et al., 2021; 263 

Zhang et al., 2021). The cell membrane and enzymes are predominantly damaged by reactive 264 

nitrogen species (RNS) and reactive oxygen species (ROS) during cold plasma treatment (Kang 265 

et al., 2021; Liao et al., 2017). Kim et al. (2011) reported a decrease of about 1–2 Log CFU/g 266 

for L. monocytogenes, Esherichia coli, and Salmonella on sliced bacon when treated with He 267 

and He/O2 plasmas. Ulbin-Figlewicz et al. (2014) found a notable reduction of 2 Log CFU/g 268 

for Y. enterocolitica within 2 min and 2 Log CFU/g for P. fluorescens after 5 and 10 min of 269 

exposure to cold plasma for beef. 270 

Lytic bacteriophages 271 
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Bacteriophage (Phage) refers to a virus that uses bacteria as a host, and when infected with a 272 

specific bacterium, it has a life cycle of self-proliferating within the bacterium and lysis the 273 

bacterium (Cooper, 2016). Phages are increasingly being applied as a biological control method 274 

to improve the microbiological safety in the food industry. Currently, phages targeting bacteria 275 

such as L. monocytogenes are being sold with approval from the Food and Drug Administration 276 

(Moye et al., 2018). LISTEX P100 phage is one of the phages that fight against L. 277 

monocytogenes, and effectively reduced L. monocytogenes (2.5 Log units reduction) that had 278 

been artificially contaminated in Brazilian fresh sausages (Rossi et al., 2011). Commercial 279 

phages based on LISTEX P100 are safe enough to be registered as GRAS (Sillankorva et al., 280 

2012). Mohammadi et al. (2022) examined phages effect of C. perfringens lysis, and phages 281 

induced survival of C. perfringens in pasteurized milk and chicken meat. The effect of phages 282 

to lyse bacteria becomes stronger when bacteria are metabolically active, so the effect is better 283 

at room temperature or 37oC rather than at low temperatures (Cooper, 2016; Tomat et al., 2018). 284 

Since decreased metabolism of bacteria means decreased metabolism of phages, the latency 285 

period of phages may be somewhat longer at low temperatures. Nevertheless, since the 286 

bacterial lytic ability of phages is clearly observed even at low temperatures (Cooper, 2016), it 287 

may be effective in controlling the growth of psychrotrophic bacteria. 288 

High pressure processing (HPP) 289 

High-pressure processing (HPP) is a non-thermal technique that changes protein structure, 290 

causes protein denaturation, and lowers enzyme activity in microorganisms in order to prevent 291 

the growth of pathogenic psychrotrophic bacteria (Hurtado et al., 2019; Wisniewski et al., 292 

2024). HPP increases the duration that various foods, including seafood, dairy products, meat 293 

products (RTE sliced deli meat, dry-cured meat, and hotdog products), and liquid products 294 

(fruit juices and purees), may be stored without spoiling. The storage duration of products 295 
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preserved with this technology is a few days to a few weeks, and they should be kept at a 296 

temperature below 7°C (Silva et al., 2023). Park et al. (2022) reported a significant reduction 297 

in L. monocytogenes in raw beef when treated with HPP for 2 to 7 min at 500 MPa and 4°C, 298 

decreasing from 3.9 to 6.5 Log CFU/g. In contrast, Stratakos et al. (2019) reported that 299 

extending the duration of HPP treatment from 3 to 5 min at pressure of 400, 500, and 600 MPa 300 

at 18°C in raw milk only slightly increased L. monocytogenes decline from 5.7 to 5.9 Log 301 

CFU/g. However, HPP has several limitations, including difficulties in commercialization due 302 

to high installation and maintenance costs (Aganovic et al., 2017). Furthermore, HPP is 303 

ineffective against spores and certain enzymes that are resistant to pressure, and it may induce 304 

color changes in some animal foods (Bolumar et al., 2020; Myers et al., 2013). 305 

Ohmic heating 306 

Ohmic heating is an innovative technique for heating food substances promptly, uniformly, and 307 

efficiently and is effective at inactivating microorganisms (Richa et al., 2017). The importance 308 

of the relationship between metallic prosthetic groups (polyphenol oxidase, lipoxygenases, and 309 

alkaline phosphatase) and electric current was emphasized by Makroo et al. (2020). Ohmic 310 

heating, depending on variables such as electrical conductivity, time, and electric field strength, 311 

effectively eliminates pathogens (L. monocytogenes, E. coli, and Salmonella) and spoilers 312 

(Leuconostoc mesenteroides and P. aeruginosa) in animal-derived foods (Lee et al., 2012; 313 

Saxena et al., 2016). Salmonella in baby formula and Streptococcus thermophilus in milk were 314 

reduced by about 5 Log CFU/mL at 60oC in 2.91 min and 15 min, respectively, using ohmic 315 

heating, which demonstrated a more intense inactivation rate than conventional heating (Pires 316 

et al., 2021; Sun et al., 2008). Furthermore, ohmic heating reduced P. aeruginosa in meatball 317 

samples by 3 Log CFU/g at 125°C for 5 min (Mitelut et al., 2011).  318 

Ultraviolet light 319 
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Ultraviolet (UV) light, with wavelengths ranging from 100 to 400 nm (Barba et al., 2017), has 320 

been used to increase the storage duration of various animal-derived foods by bactericidal 321 

inactivation and enzyme inhibition (Manzocco et al., 2009; Monteiro et al., 2020; Visuthiwan 322 

and Assatarakul, 2021). UV light can deactivate microbial enzymes through: (1) UV radiation 323 

is absorbed by chromophore groups or proteins, which produces excited states or radicals, and 324 

(2) proteins can be indirectly oxidized by singlet oxygen, which is formed from other chemicals 325 

that absorb light energy. These actions can cause oxidative stress, leading to alterations in the 326 

three-dimensional conformation of proteins and a decrease in their catalytic activity (Lante et 327 

al., 2013). UV-C light decreased the counts of L. monocytogenes, Pseudomonas spp., and β-328 

lactamase producing bacteria from 1.1 to 2.8 Log CFU/cm2 at 0.05 to 3 J/cm2 (10 mW/cm2, 329 

from 5 to 300 s) (Mcleod et al., 2018). Additionally, Brochothrix thermosphacta and Y. 330 

enterocolitica counts were decreased by up to 1.1 Log CFU/g and 0.8 Log CFU/g, respectively, 331 

by UV-C light during refrigerated storage at concentrations of 408 and 4,080 mJ/cm2 (Reichel 332 

et al., 2020). 333 

 334 

Conclusion  335 

Psychrotrophic bacteria present a significant challenge in maintaining the safety and quality of 336 

animal-derived foods during storage and transportation, particularly under refrigerated 337 

conditions. Understanding the characteristics and prevalence of these bacteria as well as their 338 

contamination patterns in various animal resources is crucial for implementing effective control 339 

measures. Nonthermal techniques offer promising alternatives to traditional thermal techniques 340 

for reducing psychrotrophic bacterial contamination in animal-derived foods while preserving 341 

their sensory and nutritional properties. Further research and implementation of these 342 

technologies are essential to ensure the microbiological safety and storage duration of animal-343 



 

16 

 

derived products in the food industry. 344 
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Table 1. Summary of the studies reporting the prevalence of psychrotrophic bacteria in 719 

animal-derived foods 720 

Microorganisms Type of foods 
No. of positive 

samples (%) 
Reference 

Listeria spp. Dairy products Raw sheep milk 14/62 (11.1) Rahimi et al., 

2010 Raw cow milk 10/90 (22.6) 

Raw goat milk 4/60 (6.7) 

Cheese 17/90 (18.9) 

Ice cream 7/68 (10.3) 

Butter 2/40 (5.0) 

Raw milk 41/140 (29.2) Akrami-

Mohajeri et al., 

2018 

Cheese 17/120 (14.1) 

Butter 4/100 (4.0) 

Raw milk 2/30 (6.6) Ismaiel et al., 

2014 

Raw milk 84/766 (11.0) Al-Mariri et al., 

2013 

Listeria 

monocytogenes 

Meat Pig carcass 12/430 (2.8%) Oswaldi et al., 

2021 

Raw pork 104/356 (29.2) Li et al., 2018 

Raw meat 98/525 (18.7) Kramarenko et 

al., 2013 

Frozen lean 

beef 

1/30 (3.3) Ismaiel et al., 

2014 

Raw meats 

(minced pork 

and beef meat) 

103/295 (34.9) Vitas and 

Garcia-Jalon 

(2004) 

Poultry 57/158 (36.1) 

Raw processed 

meat 

149/765 (19.5) Matle et al. 

(2019) 

Raw intact meat 56/557 (10.1) 
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Dairy products White cheese 5/105 (4.8) Kahraman et 

al., 2010 Processed 

cheese 

1/70 (1.4) 

Queso fresco 

cheese 

7/75 (9.3) Beltran et al., 

2015 

Adobera cheese 12/100 (12) Torres-Vitela et 

al., 2012 Panela cheese 6/100 (6) 

RTE meat 

products 

Ham and turkey 6/507 (1.2) Lambertz et al., 

2012 

RTE milk 

products 

13/4901 (0.3) Kramarenko et 

al., 2013 

RTE meat 

products 

135/6746 (2.0) 

RTE meat 

products 

59/436 (13.5) Matle et al. 

(2019) 

Pseudomonas 

spp. 

Dairy products Raw milk 93/103 (90.3) Marchand et al., 

2012 

Raw milk 18/20 (90.0) Yang et al., 

2020 

Raw milk 35/50 (70.0) Aziz et al., 

2022 

Milk 

(raw, n=4; 

pasteurized, 

n=8) 

6/12 (50.0) Carminati et al., 

2019 

Cheese 3/20 (15.0) 

White cheese 32/140 (22.9) Alslan et al., 

2011 

Meat Chicken meat 7/15 (46.7) Mahato et al., 

2020 

Chicken meat 91/168 (54.2) Wu et al., 2023 

Pork meat 18/91 (19.8) 
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Frozen chicken 

meat 

69/320 (21.6) Elbehiry et al., 

2022 

Fresh beef 3/60 (5.0) Rezaloo et al., 

2022 Frozen beef 8/60 (13.33) 

Beef 122/230 (53.04) Benie et al., 

2017 Smoked fish 33/140 (23.57) 

Fresh fish 49/140 (37.69) 

RTE meat 

product 

Sausage 5/60 (8.33) Sofy et al., 

2017 Luncheon meat 11/60 (18.3) 

Beef burger 1/60 (1.67) 

Frozen burger 1/25 (4.0) Hassan et al., 

2020 

Animal Fecal samples 46/704 (6.5) Ruiz-Roldan et 

al., 2020 

Yersinia 

enterocolitica 

Dairy products Dairy products 

(cheese, butter, 

and yogurt) 

6/49 (12.2) Mancini et al., 

2022 

Raw cow milk 12/44 (27.3) 

Raw goat milk 1/4 (25.0) 

Raw milk 19/446 (4.3) Jamali et al., 

2015 

Raw milk 11/50 (22.0) Ahmed et al., 

2019 Fermented milk 6/50 (12.0) 

Pasteurized 

milk 

2/50 (4.0) 

Ripened salted 

cheese 

1/50 (2.0) 

Meat Chicken  132/720 (18.3) Momtaz et al., 

2013 

Chicken  37/50 (74) Palau et al., 

2024 Pork  8/10 (80) 

Salmon 8/10 (80) 
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Salmon 4/5 (80) Davies et al., 

2001 

Pork 11/237 (5.2) Esnault et al., 

2013 Beef 11/210 (5.2) 

Poultry 12/202 (5.9) 

Chicken 41/190 (16) Soltan Dallal et 

al. (2010) Beef 19/189 (9.5) 

Clostridium 

botulinum 

Honey Polish honey 5/240 (2.1) Grenda et al, 

2018 

Kazakh honey 1/197 (0.5) Maikanov et al., 

2019 Clostridium 

perfringens 

18/197 (9.1) 

Dairy products Raw milk 78/79 (98.7) Feligini et al., 

2014 Curd 79/79 (100) 

Meat and meat 

products 

Beef 20/40 (50) Issimov et al., 

2022 Lamb 9/40 (22.5) 

Ground beef 11/40 (27.5) 

Minced lamb 16/40 (27.9) 

Raw chicken 6/25 (24.0) Shaltout et al., 

2017 Raw beef 4/25 (16.0) 

 721 

 722 

 723 

 724 

 725 


