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Abstract (within 250 words) 9 

The presence of non-halal meats in declared halal meat products is truly prohibited to be consumed, 10 

especially for Muslim consumers. The objective of this study was to identify dog meat (DM) 11 

adulteration in beef sausage (BS) using an untargeted metabolomics technique based on liquid 12 

chromatography-high resolution mass spectrometry (LC-HRMS) Orbitrap incorporated with 13 

chemometrics tools. Chemometrics of principal component analysis (PCA), partial least square-14 

discriminant analysis (PLS-DA), partial least square (PLS), and orthogonal PLS was used to manage 15 

the metabolomics data. PCA could differentiate the authentic BS and that adulterated with DM. In 16 

addition, PLS-DA successfully classified BS and BS adulterated with DM according to their classes 17 

with R2X=0.815, R2Y=0.950, and Q2=0.582, repectively. Metabolites of trans-10-heptadecenoic acid, 18 

N-stearoyltyrosine, L-gamma-glutamyl-L-leucine, 1-(beta-D-ribofuranosyl) thymine, adenosine, 19 

(3beta,24R,24'R)-fucosterol epoxide, acetyl-L-carnitine, isoleucine, diisobutyl adipate, L-tyrosine, 20 

carnosine, and DL-glutamine were found as discriminating metabolites with variable importance for 21 

projection (VIP) value of >2.0 for discriminating BS from DM adulteration. In addition, OPLS using 22 

variables of discriminating metabolites was successfully used to predict DM levels in BS with R2 of 23 

0.9995, root mean square error of estimation (RMSEE) of 0.88%, and root mean square error of 24 

prediction (RMSEP) of 1.63%. It can be concluded that the untargeted metabolomics approach using 25 

LC-HRMS assisted with chemometrics is potential tools to be used for the authentication of BS from 26 

DM adulteration. In the future, research on larger samples and method standardization is highly 27 

urgent to ensuring the reproducibility of this method. 28 

Keywords: Beef sausage; Chemometrics; Dog meat; Halal authentication; LC-HRMS 29 

metabolomics 30 

 31 

  32 
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Introduction 33 

The growth of halal market on food products increased every year due to the increase 34 

of consumer awareness on halal foods (Haleem et al., 2020; Kurniawati and Cakravastia, 35 

2023). Halal foods are in high demand not only in Muslim countries but also in non-Muslim 36 

countries since they are associated with the religion, beliefs, as well as healtful and safe foods 37 

(Kohilavani et al., 2021; Kurniawati et al., 2024). However, some misconduct practices were 38 

found on halal foods, for instance, the addition or substitution halal foods with non-halal 39 

components by unethical players. The main reason in adulterating halal foods with non-halal 40 

ones is economics reasons to gain more profits (Owolabi and Olayinka, 2021). Among the 41 

food products, meat-based products become the most susceptible to be adulterated with non-42 

halal components, because adulterating meats with non-halal meats is quite easy and is 43 

difficult to be recognized, especially in meat products (Li et al., 2020; Siswara et al., 2022). 44 

The detection of non-halal meat in declared halal-meat products is truly challenging due to 45 

the process applied in cooking treatment that led to the difficulties in detecting adulteration 46 

visually, especially using conventional methods (Mortas et al., 2022). Therefore, the 47 

advanced analytical methods for detecting non-halal meat adulteration in processed meat 48 

products is urgently required. 49 

 Currently, a number of analytical techniques are available for the analysis of non-50 

halal meats in products that have been declared to be halal, including spectroscopy, gas 51 

chromatography, liquid chromatography, real-time polymerase chain reaction (RT-PCR), 52 

enzyme linked immunosorbent assay (ELISA), and mass spectrometry-based method 53 

incorporated to gas chromatography or liquid chromatography (Li et al., 2022; Mortas et al., 54 

2022; Perestam et al., 2017; Pranata et al., 2021; Uddin et al., 2021). The DNA-based 55 

methods using RT-PCR and protein-based methods using ELISA become the most common 56 

methods used in some laboratories for identifying meat species (Hossain et al., 2022). 57 
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However, in some cases, these methods are not suitable for highly processed food products 58 

due to the degradation of DNA and protein (Wang et al., 2021). The complex and rigorous 59 

sample preparation also becomes a concern during the employment of RT-PCR and ELISA 60 

methods. In addition, a specific probe and a specific monoclonal antibody which are truly 61 

costly, are required to obtain high selectivity methods for RT-PCR and ELISA, respectively 62 

(Chen et al., 2020; Hossain et al., 2023). Therefore, effort on the exploration and 63 

development of other analytical approaches are important to obtain effective, efficient, and 64 

powerful techniques for analysis non-halal meats in highly processed meat products. 65 

 Recently, metabolomics emerges as a powerful approach for the comprehensive 66 

analysis of metabolites contained in samples (Harrieder et al., 2022). It has been used by 67 

many researchers to identify metabolites in various research fields such as food analysis, 68 

clinical diseases, drug discoveries, plant analysis, etc. (Liang et al., 2024; Xu et al., 2024). 69 

Metabolomics allows for identification of metabolite changes in food products due to some 70 

factors such as processing, cooking treatment, storage, and adulteration (Utpott et al., 2022; 71 

Shi et al., 2024). Some analytical techniques which are eligible for metabolomics included 72 

gas chromatography-mass spectrometry (GC-MS), liquid chromatography-tandem mass 73 

spectrometry (LC-MS/MS), liquid chromatography-high resolution mass spectrometry (LC-74 

HRMS), and nuclear magnetic resonance (NMR) spectrometry (Lau et al., 2020; Jia et al., 75 

2021; Nguyen Thi et al., 2021; Pranata et al., 2021). Among the metabolomics techniques, 76 

LC-HRMS offers a high sensitivity and a high resolution for the comprehensive identification 77 

of metabolites from certain samples. A higher number of metabolites could be obtained from 78 

LC-HRMS compared to other analytical techniques. Due to its sensitivity and resolution, LC-79 

HRMS can profile a broad spectrum of metabolites, including polar and non-polar 80 

compounds, which is essential for comprehensive metabolomics studies. In addition, the 81 

separation of metabolites through the LC system allows to reduce the overlapping analytes 82 
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which can be better detected on HRMS. Therefore, other method might not be able to identify 83 

as comprehensive as possible of metabolites compared to LC-HRMS (Muguruma et al., 84 

2022). LC-HRMS has been applied for analysis of many types of samples with satisfying 85 

results such as in plant extracts, meats, blood plasma, urine, and cell lines (Jain et al., 2019; 86 

Dinis et al., 2023; Indrianingsih et al., 2024). Combined with powerful statistical tools of 87 

chemometrics, the broad metabolomics data could be managed resulting more interpretable 88 

and understandable data. The use of chemometrics for metabolomics data is inevitable due to 89 

the complex metabolites data obtained from untargeted metabolomics analysis (Qin et al., 90 

2024). For instance, LC-HRMS untargeted metabolomics and chemometrics such as principal 91 

component analysis (PCA) and partial least square-discriminant analysis (PLS-DA) were 92 

successfully employed to detect pork in Tuna fish meat (Suratno et al., 2023).  Moreover, the 93 

changes on metabolites of low temperature sausages left at room temperature for several days 94 

could be identified using LC-HRMS in conjuction with PCA and PLS-DA (Han et al., 2022). 95 

 To the best of our knowledge, there is no report on metabolomics analysis using LC-96 

HRMS assisted with chemometrics techniques for analysis of DM adulteration in beef 97 

sausages. In addition, there is lacking on information on the discriminating metabolites 98 

potential for biomarker candidates to distinguish BS and BS containing DM. This is the first 99 

study on the metabolomics using LC-HRMS and chemometrics for the authentication of beef 100 

sausages from dog meat adulteration. The global metabolomics profiling of sausages made 101 

from beef, dog meat, and mixtures of beef-dog meat has not been studied before. Therefore, 102 

the objective of this study was to develop the metabolomics approach using untargeted LC-103 

HRMS to investigate metabolite profiles of sausages made from beef, dog meat, and mixture 104 

of beef-dog meat. The second objective was to apply chemometrics techniques including 105 

PCA, PLS-DA, PLS, and OPLS to differentiate and classify pure and adulterated BS samples 106 

for identification dog meat adulteration in BS. Moreover, the discriminating metabolites 107 
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responsible for distinguishing BS and BS containing DM were identified through variable 108 

importance for projections (VIP) value analysis. 109 

 110 

Materials and Methods 111 

Materials 112 

The LC-MS grade solvents of methanol and water, the Pierce Velos ESI positive 113 

calibration, and the Pierce Velos ESI negative calibration were supplied from Fisher 114 

Scientific (Thermo Scientific, Rockford, IL, USA). The HPLC grade methanol and analytical 115 

grade of formic acid were purchased from E.Merck (Darmstadt, Germany). 116 

 117 

Sample collection 118 

The loin portion of the beef meat was collected from five separate marketplaces in 119 

Yogyakarta and Central Java, Indonesia. The loin part of the dog meat was provided from 120 

three meat suppliers in Yogyakarta, Indonesia. The age of both beef and dog was around 2 121 

years old with weight of 300-350 kg and 10-15 kg for beef and dog, respectively. All meats 122 

were immediately stored at -20oC until used for sample preparation and analysis. 123 

 124 

Preparation of sausage samples 125 

For both beef and dog meat, samples were cut into small pieces and then 126 

homogenized using a different meat grinder for beef and dog meat. The procedure for 127 

sausage preparation was based on (Pebriana et al., 2017) with slight modification. The 128 

sausages were made using meats and the ingredients with the proportion of 90% meat and 129 

10% ingredients consisting of onion (2%), salt (2%), tapioca flour (5%), and white pepper 130 

(1%). First, the minced meat was blended with all ingredients and homogenized using a 131 
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blender. The mixtures were then put into a manual sausage maker. The adulterated BS with 132 

DM was prepared by mixing beef-dog meat in binary mixtures consisting of dog meat level 133 

of 0.1%, 1%, 5%, 10%, 25%, 50%, and 75% (w/w). The percentage of adulteration was based 134 

on meat weight. A wide range of dog meat was used to know the effect of dog meat 135 

adulteration on the metabolite’s composition of BS. All sausages were cooked by steaming at 136 

around 100oC for 30 min. 137 

 138 

Metabolite extraction of sausages for metabolomics analysis 139 

Five grams of samples were weighed and put into a 50 mL centrifuge tube. Extraction 140 

of metabolites was conducted using solvent of methanol (25 mL), and then vortexed for 30 s. 141 

Because methanol can extract a wide spectrum of metabolites from polar to semipolar 142 

molecules, it was selected as the extraction solvent (Zeki et al., 2020). To complete the 143 

extraction process, the mixture was then sonicated at 25oC for 30 min. Then, 1 mL of 144 

supernatant was taken and transferred into a 2 mL centrifuge tube. After being filtered using a 145 

0.22 μm PTFE filter, the supernatant was transferred into a 2 mL HPLC vial. LC-HRMS 146 

analysis was then performed on the samples (Windarsih et al., 2022). 147 

 148 

Metabolomics analysis using LC-HRMS 149 

Metabolomics analysis was performed using an untargeted metabolomics approach. 150 

The analysis of metabolites was according to (Windarsih et al., 2022). An ultra-high 151 

performance liquid chromatography (UHPLC, Vanquish, Thermo Scientific, USA) was used 152 

to separate the metabolites. A-10 μl sample was injected and eluted through an analytical 153 

column of Accucore C-18 (100 mm x 2.1 mm x 2.1 μm) which maintained at 40oC during the 154 

analysis. Mobile phase of water (A) and methanol (B) were used for a gradient elution 155 
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technique and both added with 0.1% formic acid. The elution started at 0-5 min using 5%B, 156 

then linearly increased to 90% B until 16 min. After that, the condition of 90% B was 157 

maintained at 16-30 min. Finally, the condition was turned back to 5% B at 30-35 min. The 158 

elution flow was performed at 0.30 mL/min. 159 

On the one hand, the metabolites were detected using a high-resolution mass 160 

spectrometer (HRMS, Q-Exactive Orbitrap, Thermo Scientific, USA). The ionization of 161 

metabolites used a heated-electrospray ionization (HESI). During the ionization, the sheath 162 

gas flow rate was 32 arbitrary unit (AU) accompanied by sweep gas flow rate of 4 AU and 163 

auxiliary gas flow rate of 8 AU. During the detection of metabolites, the temperature of gas 164 

heater was set at 30oC, whereas the temperature of capillary was maintained at 320oC. The 165 

scanning of compounds was performed at 66.7-1000 m/z with scanning resolution of 17,000 166 

(MS1) and 17,500 (MS2). Mass spectrometer calibration was performed using Pierce ESI 167 

Velos positive and Pierce ESI negative. 168 

 169 

Data analysis 170 

The XCalibur software (Thermo Scientific, USA) was used to process the raw total 171 

ion chromatogram (TIC) acquired from LC-HRMS measurement. Then, the TIC was copied 172 

and processed for the extraction of metabolites information using a Compound Discoverer 173 

software. The steps in Compound Discoverer including spectrum selector, background 174 

subtraction, baseline correction, retention time alignment, peak detection, and compound 175 

annotations. The identification of compounds used two online databases of MzCloud and 176 

ChemSpider. The table of compounds consisted of name of compounds, molecular formula, 177 

retention time, calculated molecular weight, and peak area was exported into a Microsoft 178 
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Excel. The compounds were filtered by: mass error between -5 ppm and 5 ppm and MS2 for 179 

the preferred ion. 180 

 181 

Chemometrics analysis 182 

The metabolites data obtained from Compound Discoverer analysis was exported 183 

into Microsoft excel. The table consisting of metabolites name and the area was used for 184 

chemometrics analysis. The software of SIMCA 14.1 (Umetrics, Sweden) and 185 

Metaboanalyst, an online platform, were used for chemometrics analysis. Pattern 186 

identification and samples classification were accomplished using principal component 187 

analysis (PCA) and partial least square-discriminant analysis (PLS-DA), respectively. 188 

Meanwhile, partial least square (PLS) and orthogonal PLS (OPLS) were used as quantitative 189 

chemometrics for predicting dog meat in BS. Prior to analysis, the data were scaled using 190 

auto scaling technique. PCA was evaluated using the R2 and Q2 value. Meanwhile, PLS-DA 191 

was created to discriminate and classify sausage samples and evaluated using R2X, R2Y, and 192 

Q2 value. The value of variable importance for projection (VIP) from PLS-DA was examined 193 

to determine the discriminating metabolites that distinguish between pure and adulterated 194 

samples. Metabolites with VIP value >1.50 and p-value <0.5 from ANOVA analysis were 195 

considered to have high responsibility as discriminating metabolites. The validation test was 196 

performed to validate PLS-DA model using two techniques, permutation test and receiver 197 

operating characteristic (ROC) test. On the other hand, the PLS and OPLS were evaluated for 198 

their performance using R2, root mean square error of estimation (RMSEE), of prediction 199 

(RMSEP), and of cross validation (RMSECV). 200 

 201 

  202 
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Results and Discussion 203 

Metabolomics analysis using LC-HRMS 204 

 Various metabolites from BS, DS, and BS containing different levels of DM could be 205 

identified using LC-HRMS with untargeted metabolomics approach. LC-HRMS is known for 206 

its high sensitivity in metabolomics analysis due to its high resolution among LC-MS/MS. It 207 

has been used to screen the global metabolite profiles of any types of samples including food 208 

products, plants, bloods, and plasma (Zeki et al., 2020; Nguyen Thi et al., 2021; Liesenfeld et 209 

al., 2022). In this study, the metabolites were putatively annotated against the metabolite 210 

database of MzCloud and ChemSpider. Amount of 287 metabolites were selected for further 211 

chemometrics analysis. Fig. 1. shows the TIC of sausage made from pure BS), pure dog meat 212 

(DS), and adulterated BS with 50% dog meat recorded from min 0 to min 35. The TIC from 213 

the LC-HRMS untargeted metabolomics shows the fingerprint pattern of each sample due to 214 

the difference of metabolites compositions among samples.  215 

 The identified metabolites came from various classes including amino acids, organic 216 

acids, fatty acids, glucose, lipids, nucleic acids, peptides, and other classes. Some non-meat 217 

metabolites were found because the sausages were made using several ingredients instead of 218 

meat to mimic the commercial sausages available in the market. However, the metabolites of 219 

meats were still dominant due to the larger proportion of meats (90%) than the other 220 

ingredients (10%). The adulteration of meat will obviously affect the metabolites composition 221 

because there are differences of metabolites on each type of meat. Therefore, by identifying 222 

the metabolites, can be used to reveal the adulteration practices of BS with DM.  223 

 224 

  225 
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Chemometrics of pattern recognition analysis 226 

 The metabolites data were subjected to chemometrics analysis to identify DM 227 

adulteration in BS. PCA using the first principal component (PC1) and second principal 228 

component (PC2) could differentiate BS made from pure beef, pure dog meat, and mixing of 229 

beef-dog meat. The PC1 and PC2 accounted for 41.1% and 10.7%, respectively, representing 230 

51.8% of the original variables. The good of fitness of PCA model was shown by the R2 231 

value (0.758), whereas the good predictivity was demonstrated from the Q2 value (0.481). 232 

PCA is one of the unsupervised pattern recognitions which is widely used for grouping 233 

samples naturally. From the PCA score plot (Fig. 2A.), the score plot of pure BS clearly 234 

appeared at a different cluster from pure DS. It indicated the difference of metabolite 235 

compositions between BS and DS. In addition, the score plot of adulterated BS with DM at 236 

various levels, appeared between pure BS and pure DS. The more DM added in BS, the 237 

closer the score plot of BS adulterated DM to the score plot of pure DS indicating the 238 

changes of metabolites composition due to DM adulteration. Additionally, the tight cluster of 239 

QC samples seen in the PCA score plot provided evidence of the stability and intra-240 

reproducibility of the LC-HRMS method.  241 

 A further PLS-DA analysis was performed to classify sausage samples using the same 242 

metabolites as variables used in PCA. Using 12 latent variables, PLS-DA successfully 243 

classified sausage samples according to their compositions with R2X=0.815, R2Y=0.950, and 244 

Q2=0.582. Fig. 2B. illustrates the PLS-DA score plot using component 1 and component 2 245 

from latent variables (LVs). The BS made from mixture of beef-dog meat could be classified 246 

into different classes according to the levels of DM added indicating the good accuracy and 247 

good prediction capacity of the PLS-DA model. PLS-DA is a supervised pattern recognition, 248 

which is often used to evaluate the PCA result. PLS-DA allows for a better discrimination 249 

result because it can maximize in searching the correlation between independent variables (x-250 
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matrix) and dependent variables (y-matrix) through the LVs. One of the advantages of PLS-251 

DA is the ability to identify metabolites responsible for discriminating samples through the 252 

VIP analysis. Metabolites with VIP value higher than 1.0 are considered to have important 253 

roles in discriminating among sample classes. The larger the VIP value of the metabolites, the 254 

higher the role of metabolites in discriminating samples (Jiménez-Carvelo et al., 2021). Table 255 

1 shows the discriminating metabolites with VIP larger than 1.5 and p-value < 0.5. According 256 

to table 1, various metabolites classes were found as discriminating metabolites such as 257 

amino acid, organic acid, fatty acid, and lipids.  258 

 There were eleven metabolites found with high role as discriminating metabolites 259 

(VIP value > 2.0), consisted of trans-10-heptadecenoic acid, N-stearoyl tyrosine, L-gamma-260 

glutamyl-L-leucine, 1-(beta-D-ribofuranosyl) thymine, adenosine, (3beta,24R,24'R)-261 

fucosterol epoxide, acetyl-L-carnitine, isoleucine, diisobutyl adipate, L-tyrosine, carnosine, 262 

and DL-glutamine. Trans-10-heptadecenoid acid was found with the largest VIP value (2.33) 263 

and it was found to be high in sausages containing 100% DM. It is a long chain 264 

monounsaturated fatty acid (C17:1). It is reported to be a minor constituent in ruminant fats. 265 

Previous research reported that the intramuscular fat of ovine, caprine, and bovine contained 266 

a minor of trans-10-heptadecenoid acid (Alves et al., 2006). Our study revealed that trans-10-267 

heptadecenoid acid was very high in DS, therefore it is potential to be further explored as a 268 

potential biomarker candidate of DM in the future such as using the targeted metabolomics 269 

approach. Then, the second largest VIP of discriminating metabolites was N-stearoyl 270 

tyrosine. It belongs to the class of N-acylamides which is also known as an amino acid 271 

conjugate. It is an organic compound, known as tyrosine and derivatives which containing 272 

tyrosine and derivatives resulting from the reaction of tyrosine at the carboxyl group or amino 273 

group (Li et al., 2016). Moreover, the third largest VIP of discriminating metabolites was L-274 

gamma-glutamyl-L-leucine. It is a dipeptide consisted of gamma-glutamate and leucine and 275 



 

15 

 

obtained from a proteolytic breakdown of larger proteins. It is also known as a bioactive 276 

peptide involved in several biological activities such as glucose regulation, inflammation, and 277 

oxidative stress (Wu et al., 2022). In addition, using the heat map (Fig. 3.), the distribution of 278 

discriminating metabolites (VIP > 1.5 and p-value < 0.5) could be observed. It was found that 279 

metabolites of L-tyrosine, isoleucine, diisobutyl adipate, DL-lysine, stearic acid, arachidonic 280 

acid, N-stearoyltyrosine, methionilleucine, DL-arginine, DL-glutamine, adenosine, L-281 

gamma-glutamyl-L-proline, D-(+)-proline, Trans-10-Heptadecenoic acid, 1-(beta-D-282 

ribofuranosyl)thymine, 5-Formamidoimidazole-4-carboxamide ribotide, 6-283 

Hydroxypseudooxynicotine, myristyl sulfate, and  N,N-dimethyl-N-[(2,3,4,5-284 

tetraphenylcyclopenta-2,4-dienyliden)methyl]amine were found in high area in the sausage 285 

samples containing high percentage of DM (50%, 75%, and 100%) and very low in sausages 286 

made from 100% beef. In addition, the correlation heat map between each discriminating 287 

metabolites is shown in Fig. 4. 288 

To evaluate the performance of PLS-DA in classifying samples, the confusion matrix 289 

was measured. The result of confusion matrix analysis (Table 2) shows that the PLS-DA 290 

model was able to classify each sample class into their corresponding classes. There was no 291 

misclassification observed indicating the good accuracy of PLS-DA in discriminating and 292 

classifying samples. In addition, to further validate the performance of PLS-DA, validation 293 

test using permutation test and receiver operating characteristics (ROC) was conducted on the 294 

PLS-DA model. Validation is required for supervised pattern recognition such as PLS-DA to 295 

avoid overfitting model which can lead to bias results (Martín-Gómez et al., 2023). Using 15 296 

components, permutation test employing 999 permutations confirmed the validity of PLS-DA 297 

model with intersection of Q2 (0.0, -0.579). In addition, ROC test demonstrated the perfect 298 

AUC value (AUC=1) for each sample class indicating the correct classification of each 299 

sample class and no misclassification between classes occurred. 300 
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Chemometrics of multivariate calibration 301 

 Multivariate calibration chemometrics was also applied using variables of 302 

discriminating metabolites (VIP > 1.0, p-value < 0.5). In this study, PLS and OPLS 303 

regression using the metabolite area was created to build a prediction model for detecting and 304 

predicting DM levels in BS. The results showed that either PLS or OPLS regression were 305 

capable of predicting DM levels with good accuracy (R2=0.9995) for both models. The good 306 

precision was shown by the RMSEE, RMSEP, and RMSECV which accounted for 0.88%, 307 

1.63%, and 3.32% for PLS as well as 0.88%, 1.63%, and 2.79% for OPLS, respectively. The 308 

OPLS regression had slightly lower RMSECV than in PLS. Fig. 5. presents the plot of actual 309 

DM versus calculated DM predicted from the OPLS regression model. It showed that the 310 

actual value of DM had a high correlation with the calculated value predicted from OPLS 311 

regression. PLS and OPLS has been widely used to predict target of analytes using 312 

multivariate data. Using the latent variables (LVs), PLS and OPLS maximize the searching of 313 

correlation between independent variables and dependent variables, thereby resulting an 314 

accurate prediction model. In addition, the orthogonal algorithm in OPLS allows for 315 

removing the variables which are not correlated to the dependent variables (Eriksson et al., 316 

2012). Therefore, in some cases, OPLS could provide better results than PLS. In 317 

metabolomics study, PLS and OPLS are very useful to predict target of analytes to reveal 318 

adulteration practices. In this study, PLS and OPLS established the role of discriminating 319 

metabolites obtained from VIP analysis as the important metabolites to predict DM 320 

adulteration levels in BS. 321 

 According to the above results, study on using LC-HRMS is beneficial for further rese322 

arch to conduct in-depth research based on the currently-suggested metabolites, especially the323 

 discriminating metabolites obtained from LC-HRMS, because the first step in metabolomics 324 

study to discriminate samples which the markers have not been previously defined is to perfo325 
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rm untargeted metabolomics for obtaining a global/holistic overview of metabolites. Then, aft326 

er the discriminating metabolites is obtained from the VIP analysis, the targeted analysis focu327 

sing in-depth analysis of the discriminating metabolites is highly recommended to be perform328 

ed. Therefore, after the targeted analysis was validated, it can be used to detect dog meat adul329 

teration in beef sausages using the LC-MS/MS instruments. 330 

 331 

Conclusion 332 

Various metabolites in sausages made from beef, dog meat, and mixture of beef-dog meat at 333 

several levels could be identified using a non-targeted LC-HRMS metabolomics. PCA and 334 

PLS-DA were successfully applied to distinguish BS, DS, and BS adulterated dog meat. 335 

Metabolites of trans-10-heptadecenoic acid, N-stearoyltyrosine, L-gamma-glutamyl-L-336 

leucine, 1-(beta-D-ribofuranosyl) thymine, adenosine, (3beta,24R,24'R)-fucosterol epoxide, 337 

acetyl-L-carnitine, isoleucine, diisobutyl adipate, L-tyrosine, carnosine, and DL-glutamine 338 

were found to have important role as discriminating metabolites with VIP value > 2.0. The 339 

PLS analysis emphasized the role of discriminating metabolites as potential biomarkers to 340 

distinguish DM in BS. It can be concluded that the untargeted metabolomics using LC-341 

HRMS incorporated with chemometrics is promising to be used for authentication of meat 342 

products. In the future, research on larger samples and targeted analysis is required to ensure 343 

the reproducibility of the method. 344 

  345 
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Table 1. The discriminating metabolites to distinguish beef sausage, dog meat sausage, and 

beef sausage containing dog meat (VIP > 1.5, p-value < 0.5) 

No Compounds VIP 

Value 

Molecular 

Formula 

Calculate

d m/z 

Retention 

Time 

(min) 

Ionization 

1 Trans-10-Heptadecenoic acid 2.33 C17H32O2 268.23959 19.764 - 

2 N-Stearoyltyrosine 2.21 C27H45NO4 447.33303 16.539 + 

3 L-Gamma-glutamyl-L-leucine 2.20 C11H20N2O5 260.13645 2.534 + 

4 1-(beta-D-ribofuranosyl)thymine 2.20 C10H14N2O6 258.08439 1.015 + 

5 Adenosine 2.18 C10H13N5O4 267.09584 1.203 + 

6 (3beta,24R,24'R)-fucosterol 

epoxide 

2.09 C29H48O2 428.36374 25.245 + 

7 Acetyl-L-carnitine 2.08 C9H17NO4 203.11477 0.738 + 

8 Isoleucine 2.07 C6H13NO2 131.09423 1.193 + 

9 Diisobutyl adipate 2.06 C14H26O4 258.18235 16.372 + 

10 L-Tyrosine 2.05 C9H11NO3 181.07334 1.048 + 

11 Carnosine 2.02 C9H14N4O3 226.10560 0.681 + 

12 DL-Glutamine 2.01 C5H10N2O3 146.06872 0.808 + 

13 1,3-Dihydroxy-2-propanyl 

(11Z,14Z)-11,14-icosadienoate 

1.99 C23H42O4 382.30643 32.041 + 

14 5-Formamidoimidazole-4-

carboxamide ribotide 

1.95 C10H15N4O9P 366.05662 1.326 - 

15 Stearic acid 1.95 C18H36O2 284.27081 22.085 - 

16 α-Linolenoyl Ethanolamide 1.87 C20H35NO2 321.26532 19.48 + 

17 N-Isobutyl-(2E,4E,14Z)-

eicosatrienamide 

1.80 C24H43NO 361.33273 21.231 + 

18 1,6,7-Trimethylnaphthalene 1.78 C13H14 170.10929 12.224 + 

19 (4S)-4-[(9Z,12Z,15Z)-9,12,15-

Octadecatrienoyloxy]-4-

(trimethylammonio)butanoate 

1.75 C25H43NO4 421.31758 16 + 

20 p-Cresylsulfate 1.73 C7H8O4S 188.01341 6.247 - 

21 Hexanoylcarnitine 1.73 C13H25NO4 259.17761 6.431 + 

22 1-Linoleoyl-2-Hydroxy-sn-

glycero-3-PC 

1.73 C26H50NO7P 519.33044 18.173 + 

23 DL-Arginine 1.72 C6H14N4O2 174.11104 0.717 + 

24 6-Hydroxypseudooxynicotine 1.71 C10H14N2O2 194.10613 13.965 - 

25 Myristyl sulfate 1.68 C14H30O4S 294.18597 21.638 - 

26 N,N-dimethyl-N-[(2,3,4,5-

tetraphenylcyclopenta-2,4-

dienyliden)methyl]amine 

1.67 C32H27N 425.21600 14.527 + 

27 Creatinine 1.66 C4H7N3O 113.05878 0.744 + 

28 4-Indolecarbaldehyde 1.65 C9H7NO 145.05256 7.674 + 

29 D-(+)-Proline 1.63 C5H9NO2 115.06316 0.791 + 

30 3,6-Anhydro-1-O-

palmitoylhexitol 

1.63 C22H42O6 402.29712 19.627 - 

31 Hypoxanthine 1.60 C5H4N4O 136.03810 0.939 + 

32 DL-Lysine 1.56 C6H14N2O2 146.10508 0.631 + 

33 Methionylleucine 1.55 C11H22N2O3S 262.13424 5.247 + 

34 Arachidonic acid 1.52 C20H32O2 304.23911 19.474 - 
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35 Benzyl isobutyl ketone 1.51 C12H16O 176.11973 10.132 + 
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Table 2. Confusion matrix analysis of partial least square-discriminant analysis to 

differentiate beef sausage, dog meat sausage, and beef sausage adulterated with dog meat 

Class Sample Members Correct 1 2 3 4 5 6 7 8 9 10 No class 

(YPred <= 

0) 

1 BS 3 100% 3 0 0 0 0 0 0 0 0 0 0 

2 0.1DS 3 100% 0 3 0 0 0 0 0 0 0 0 0 

3 1DS 3 100% 0 0 3 0 0 0 0 0 0 0 0 

4 5DS 3 100% 0 0 0 3 0 0 0 0 0 0 0 

5 10DS 3 100% 0 0 0 0 3 0 0 0 0 0 0 

6 25DS 3 100% 0 0 0 0 0 3 0 0 0 0 0 

7 50DS 3 100% 0 0 0 0 0 0 3 0 0 0 0 

8 75DS 3 100% 0 0 0 0 0 0 0 3 0 0 0 

9 100DS 3 100% 0 0 0 0 0 0 0 0 3 0 0 

10 QC 6 100% 0 0 0 0 0 0 0 0 0 6 0 

Total   33 100% 3 3 3 3 3 3 3 3 3 6 0 
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Fig. 1. Total ion chromatogram of beef sausage, dog meat sausage, and beef sausage 

containing 50% dog meat obtained from liquid chromatography-high resolution mass 

spectrometry untargeted metabolomics 
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Fig. 2. The score plot of principal component analysis (A) and partial least square-

discriminant analysis (B) to distinguish beef sausage, dog meat sausage, and beef sausage 

containing dog meat at various levels (BS=sausage 100% beef, DS=sausage 100% dog meat, 

0.1DS=sausage 0.1% dog meat, 1DS=sausage 1% dog meat, 5DS=sausage 5% dog meat, 

10DS=sausage 10% DS, 25DS=sausage dog meat, 50DS=sausage 50% dog meat, 

75DS=sausage 75% dog meat, QC=quality control samples) 
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Fig. 3. The heatmap of potential metabolite markers to discriminate dog meat adulteration in 

beef sausage obtained from VIP analysis (VIP > 1.50, p-value < 0.5, BS=sausage 100% beef, 

0.1DS=sausage 0.1% dog meat, 1DS=sausage 1% dog meat, 5DS=sausage 5% dog meat, 

10DS=sausage 10% DS, 25DS=sausage dog meat, 50DS=sausage 50% dog meat, 

75DS=sausage 75% dog meat, DS=sausage 100% dog meat) 
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Fig. 4. The correlation heatmap of the discriminating metabolites (VIP > 1.5, p-value < 0.5) 
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Fig. 5. Plot of actual concentration versus calculated concentration from orthogonal partial least 

square regression to predict dog meat levels in beef sausage using the discriminating metabolites 

(100BS=sausage 100% beef, 0.1DS=sausage 0.1% dog meat, 1DS=sausage 1% dog meat, 

5DS=sausage 5% dog meat, 10DS=sausage 10% DS, 25DS=sausage dog meat, 50DS=sausage 

50% dog meat, 75DS=sausage 75% dog meat, 100DS=sausage 100% dog meat) 

 
 

 


