1

2 3

4

TITLE PAGE - Food Science of Animal Resources -

Upload this completed form to website with submission

ARTICLE INFORMATION	Fill in information in each box below				
Article Type	Research article				
Article Title	Lipid Composition of Camel Milk and Cow Milk in Xinjiang Province of China Analyzed by Method of UPLC-Q-TOF-MS				
Running Title (within 10 words)	Lipid of Camel Milk and Cow Milk in Xinjiang Province				
Author	Jing Miao ^{1,2,3} , Jun Wang ⁴				
Affiliation	 Institute of Medicine of Xinjiang University, Xinjiang University, Urumqi, Xinjiang, PR China. Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, Xinjiang, PR China National Demonstration Center for Experimental Biology Education, Xinjiang University, Urumqi, Xinjiang, PR China School of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, PR China 				
Special remarks – if authors have additional information to inform the editorial office					
ORCID (All authors must have ORCID) https://orcid.org	Jing Miao (https://orcid.org/0000-0002-5441-6314) Jun Wang (https://orcid.org/0009-0007-7346-6580)				
Conflicts of interest List any present or potential conflict s of interest for all authors. (This field may be published.)	The authors declare no potential conflict of interest.				
Acknowledgements State funding sources (grants, funding sources, equipment, and supplies). Include name and number of grant if available. (This field may be published.)	This research was supported by the Science and Technology Program from Xinjiang Uygur Autonomous Region (NO. 2020D01C029), the Scientific Research Program of University from Xinjiang Uygur Autonomous Region (XJEDU2018Y008), Tianchi Doctoral program in 2018 from the Xinjiang Uygur Autonomous Region, and the Science and Technology Program from Xinjiang University (BS180227). We also thank APTBIO SHANGHAI for its technical assistance during the determination of our milk samples in this manuscript.				
Author contributions (This field may be published.)	Conceptualization: Jing Miao. Data curation: Jun Wang. Methodology: Jun Wang. Software: Jing Miao. Validation: Jun Wang. Investigation: Jing Miao. Writing - original draft: Jing Miao. Writing - review & editing: Jing Miao.				
(This field may be published.)	human and animal participants.				

5

6 Jing Miao CORRESPONDING AUTHOR CONTACT INFORMATION

For the <u>corresponding</u> author (responsible for correspondence, proofreading, and reprints)	Fill in information in each box below
First name, middle initial, last name	Jing, Miao

Email address – this is where your proofs will be sent	miaojing3357122@126.com
Secondary Email address	Miaojing-1987@xju.edu.cn
Postal address	Xinjiang University, No. 777 Huarui Street, Shuimogou District, Urumqi, Xinjiang, China
Cell phone number	86-13579883936
Office phone number	None
Fax number	None

9 Authors and affiliation information should be listed on a separate Title Page.
10

11 Abstract

12 Xinjiang province is the main dairy production area of China, and Junggar 13 Bactrian camel usually lived in the north part. Lipid is the main nutrient component of 14 milk, and there is few reports about the differences in lipids between camel milk and 15 cow milk in Xinjiang province. In this study, the analysis of lipids in Junggar Bactrian 16 camel milk and cow milk in north part of Xinjiang province have been carried out by UPLC-Q-TOF-MS. As a result, 669 kinds of lipids are identified in total, which are 17 18 divided into 16 lipid classes. In the results of multivariate statistical analysis, camel 19 milk and cow milk can be separated definitely when analyzed by PCA, PLS-DA, and OPLS-DA, and revealed that lipids in camel milk is different from that in cow milk. 20 21 Furthermore, 70 kinds of lipids are selected as differential lipids with the standards of 22 fold change >2 or fold change <0.5, P <0.05, and VIP >1, which concludes 1 kinds of ceramides, 1 kinds of glycosphingolipids, 21 kinds of phosphatidylcholines, 10 kinds 23 24 of phosphatidylethanolamines, 8 kinds of phosphatidylinositol, 8 kinds of 25 phosphatidylserines, 11 kinds of sphingomyelins, and 10 kinds of triacylglycerides 26 (TG). In the present study, the lipid profiles of camel milk and cow milk from 27 Xinjiang province of China are disclosed, and it can provide foundation for the 28 utilization of lipids from milk, as well as provide a potential reference for the camel 29 milk and dairy products adulteration.

31 Keywords:

32 Camel milk; Cow milk; Lipidomics; Triacylglyceride

33

34 Introduction

35 Lipid is one of the most essential component in milk, which provide physical, 36 sensory, and nutritional characteristics to dairy products, and consist of 3-5% (W/W) 37 of milk (Bakry et al., 2021). Milk fat (MF) is the main component of milk lipid, and 38 triacylglycerides (TG), phospholipids, mainly comprises of cholesterols. 39 diacylglycerides (DG), monoglycerides (MGs), and free fatty acids. Due to the rich 40 bioactive fatty acids, MF always play an important role in organisms, such as storing 41 energy, forming cell membranes, and transmitting signals (Bang et al., 2017; Sioriki et 42 al., 2016). MF also has anti-inflammatory properties against chronic diseases, such as 43 obesity, cardiovascular diseases, cancer, and rheumatoid arthritis (Lordan & Zabetakis, 44 2017; Li, 2019).

45 In recent years, there are a number of studies on the differences between milk 46 lipids of different species, which would be helpful for the further utilization and 47 identification of dairy products. Now both cow milk and camel milk has been 48 considered as potential functional foods for their plentiful fatty acids (Wang et al., 49 2022). As we all know, cow milk has become a daily food for human, and more and 50 more people became to accept camel milk due to its good healthcare benefits as the 51 production of camel milk increased year by year. Cow lipid mainly exists in the form 52 of TG, DG, MGs, cholesterols, free fatty acids and phospholipids, which account for 53 97.5%, 0.36%, 0.02%, 0.31%, 0.02%, and 0.6% of total fat, respectively (Robert,

54	2002). However, the average lipid content in camel milk is 32.8 ± 14.0 g/L, in which
55	TG was the main lipid (96.24%), and the other lipids are cholesterol ester (0.1%), free
56	cholesterol (0.84%), free fatty acid (0.65%), DG (0.7%), and phospholipid (1.2%)
57	(Ali & Omar, 2001). In fact, camel milk produced at different lactation stages have
58	been reported with different lipid compositions (Xiao, 2022). Furthermore, camel
59	milk contains lower saturated fatty acids, higher unsaturated fatty acids (Maqsood et
60	al., 2019), and higher polyunsaturated fatty acids (He et al., 2024) when compared
61	with cow milk. Recent studies also shows that camel milk contains higher content of
62	monounsaturated fatty acids than other kinds of milk (Ibrahim et al., 2023), and high
63	levels of odd- and branched-chain fatty acids, as well as low ratios of n-6 to n-3
64	polyunsaturated fatty acids (Wang et al., 2022).
65	Xinjiang province is one of main dairy source area in China with vast area, and
66	camel milk yield has reached 14,000 tons per year by 2019. In Xinjiang, all camels are
67	raised in the desert and can freely consume plants that growing on deserts feeding. Now,
68	more and more camel milk has been consumed with the rapid increase in the scale of
69	camel pastured. In our former study, Junggar Bactrian camel milk and cow milk from

е f n 70 different part of the north part of Xinjiang province have been found to have different 71 fat contents, and cow milk showed lower fat and total solid contents than camel milk 72 (Miao et al., 2023). Lipid is the most variable component of milk, and can be affected 73 by many reasons, such as geography, breeds, lactation period, and season. However, 74 people know few about the lipid profile of Junggar Bactrian camel milk in Xinjiang 75 province. Therefore, the purpose of this study is to explain the lipid profiles of Junggar 76 Bactrian camel milk and cow milk from the north part of Xinjiang province, and reveal 77 differences between them, so as to better distinguish these two kinds of milk.

78 In this study, a non-targeted lipidomics analysis platform based on ultra-79 performance liquid chromatography quadrupole time of flight (UPLC-Q-TOF) system 80 has been used for lipid identification and data processing of camel milk and cow milk, 81 and subsequently some statistical analysis methods including principal component 82 analysis (PCA), partial least squares discriminant analysis (PLS-DA), orthogonal 83 partial least squares discriminant analysis (OPLS-DA) and cluster analysis were used 84 to select differential lipids between these two kinds of milk. These results would 85 provide a comprehensive understanding of the lipid profiles of camel milk and cow 86 milk from Xinjiang province of China. Our study shows the lipid profile of Junggar 87 Bactrian camel milk and cow milk from the north part of Xinjiang province of China, 88 as well as their differential lipids, which can provide foundation for the further utilization of lipids from camel milk, and provide a reference for the camel milk and 89 90 dairy products adulteration.

91

92 Materials and Chemical reagents

93 Samples and reagents

All milk samples, contain 6 batches of Junggar Bactrian camel milk and 6 batches of Holstein cow milk, were collected from different areas of the north part of Xinjiang province, respectively, as listed in **Table 1**. Generally, camel always give birth every March and April, and entered mature lactation period from the 4th day to 320th day (Ming et al., 2023). During this period, camels lived in natural pasture, and freely consume plants in the pasture, such as camel thorn, and so on. All cow samples were collected from Holstein cows, which were fed with silage on farm.

101 Each batches of milk was collected as the mixture of milk from many camel or 102 cow. These milk samples were collected in August of 2021, at which all Junggar Bactrian camels were with mature lactation period. Milk samples were kept in clean
milk storage bags laid in a 4°C car-refrigerator on their return journey, and finally stored
at -80°C until analysis.

Acetonitrile (Thermo Fisher, Waltham, Massachusetts, USA) and methanol
(Thermo Fisher, Waltham, Massachusetts, USA) of MS grade were used, while
isopropanol (Thermo Fisher, Waltham, Massachusetts, USA), formic acid (Sigma,
Santa Clara, California, USA), and ammonium formate (Sigma, Santa Clara, California,
USA), methyl tert-butyl ether (Sigma, Santa Clara, California, USA) of
chromatographic grade were all used.

112

113 Sample processing

114 All samples were processed according to the method of Xu et al. (2023). A milk 115 sample of 30 mg was weighed precisely and transferred into a 2 mL centrifuge tube 116 with appropriate magnetic beads, and 200 µL water pre-cooled at 4°C in advance was 117 added before they were flash freezed in liquid nitrogen for 5 s. And then a Fast Prep-118 24 homogenizer (MP, Santa Ana, California, USA) was used for 60 s at the rapid of 60 m/s, and this operation was repeated for three times. After that, 240 µL pre-cooled 119 120 methanol was added and well-mixed in a Vortex mixer, and 800 µL methyl tert-butyl 121 ether was added subsequently before they were well-mixed in a Vortex meter and 122 further processed in an ultrasonic extractor at 4°C for 20 min. And 30 min later, the 123 mixture was centrifuged at 14000 rpm for 15 min at 10°C in a low-temperature high-124 speed centrifuge. At last, the supernatant fluid was moved from the tube before dried 125 with nitrogen and store at -80°C.

Each batches of camel milk and cow milk samples were extracted separately, and batches of QC samples were prepared with equal amounts of all fourteen batches of milk samples at the same time for the evaluation of the analytical method.

129

130 Analytical methods

131 The UPLC Nexera LC-30A system (Shimadzu, Kyoto, Japan) together with an 132 ACQUITY UPLC CSH C18 column (1.7 µm, 2.1 mm × 100 mm, Waters, Milford, 133 Massachusetts, USA) was employed for the separation of milk lipids. The column 134 temperature was 45°C with a flow rate of 300 µL/min and the injection volume of 135 sample of 2 μ L. The mobile phase consisted of A and B, while mobile phase A was 60% acetonitrile aqueous solution (V/V) containing 10 mM ammonium formate, and mobile 136 phase B was 10% acetonitrile-isopropanol solution (V/V) containing 10 mM 137 138 ammonium formate. The mobile phase was carried with the elution gradient as follows: 70% A and 30% B (0-2 min), 70-0% A and 30-100% B (2-25 min), while 70% A and 139 140 30% B (25-35 min). During the whole analysis, samples were stored in a 10°C 141 automatic injector and were injected according to a random sequence.

142 Mass data were recorded immediately by a Q Exactive Plus mass spectrometer 143 (Thermo Fisher Scientific, Waltham, Massachusetts, USA) with both positive and negative ion modes of the Electrospray ionization (ESI). Heater temperature was set at 144 145 300°C, flow rate of sheath gas was 45 ARB, auxiliary gas was 15 ARB, sweep gas was 146 1 ARB, and capillary temperature was 350°C. For the positive mode, spraying voltage 147 was 3.0 kV, S-lens RF level was 50%, and MS1 scan range was from 200 to 1800 m/z, 148 while for the negative detection, spraying voltage was 2.5 kV, S-lens RF level was 60%, 149 and Mass1 scan range was from 250 to 1800 m/z. Ten Mass2 scan were execute for each Mass1 scan, and survey scans were acquired at a resolution of 70000 at 200 m/z 150

151 for Mass1 scan, while the resolution of the HCD spectra was set to 17500 at 200 m/z 152 for Mass2 scan.

- 153
- 154 **Statistical analysis**

155 Lipid Search TM software was used for the process of Mass data, which has been 156 used as an automated lipidomics analysis software from Thermo Scientific, and 157 recorded primary and secondary information databases of more than 1500000 kinds of 158 lipids, including peak recognition, peak extraction, and searched against the software 159 database for lipid identification. The precursor tolerance was 5 mg/kg, and product 160 tolerance was 5 mg/kg, while product ion threshold was 5%. In order to accurately excavate the potential information in the date, univariate analysis and multivariate 161 162 statistical analysis were applied using Metaboanalyst online software (https://www.metaboanalyst.ca/Metabo-Analyst/home.xhtml, updated on 1/18/2024). 163 Furthermore, univariate statistical analysis was used to distinguish differential lipids 164 between camel milk and cow milk, which mainly includes student's t-165 test/nonparametric test and fold change analysis, and multivariate statistical analysis 166 includes PCA, PLS-DA and OPLS-DA. 167

168 Differential lipids between camel milk and cow milk were preliminary screened 169 out by combining p-value and VIP value of OPLS-DA, and hierarchical cluster analysis 170 of differential lipids was performed. The experiment of this study was mainly 171 conducted by Applied Protein Technology Limited Company, SHANGHAI.

172

173 **Results and Discussion**

174 **Evaluation of analytical method** 175 The TIC spectrograms of three QC samples are compared, and the result shows 176 that the chromatographic peak response intensity and retention time of each OC sample 177 overlapped well both in positive and negative ion modes (Figure S1). Further analysis 178 also shows that correlation coefficients of three batches of QC samples are all more 179 than 0.999 (Figure S2), and three QC samples are closely clustered in PCA (Figure 180 S3). Meanwhile, QC samples, camel milk samples, and cow milk samples all are analyzed by Hotelling T2 test, and confidence interval of three QC samples are within 181 182 99% (Figure S4). All these above results indicate that the analytical method used in 183 this study is reliable, steady, defined, and repeatable.

184

185Identification of lipids in cow and camel milk

186 Information of lipids identified in camel milk and cow milk are showed in Figure 187 1A and Table S1. Totally, 669 kinds of lipids are identified in both camel milk and cow 188 milk, and these lipids can be described as 16 lipid classes, include 24 kinds of ceramides 189 (Cer), 45 kinds of glycosphingolipids (CerG1), 1 kind of diglucose ceramide (CerG2), 190 31 kinds of DG, 12 kinds of lysophosphatidylcholines (LPC), 15 kinds of lysophosphatidyl- ethanolamine (LPE), 1 kinds of lysophosphatidylinositol (LPI), 69 191 192 kinds of phosphatidylcholines (PC), 61 kinds of phosphatidylethanolamines (PE), 6 193 kinds of phosphatidylglycerols (PG), 15 kinds of phosphatidylinositol (PI), 39 kinds of 194 phosphatidylserines (PS), 50 kinds of sphingomyelins (SM), 5 kinds of sphingosines 195 (So), 294 kinds of TG, and 1 kind of wax ester (WE).

196 Contents of 16 classes of lipids identified from camel milk and cow milk varied at 197 different extent as listed in **Figure 1B**. All data are presented as mean±SD, and 198 statistical and graphical evaluations are conducted by student's t-test. Contents of 199 CerG1, CerG2, TG, and PG in cow milk are significantly higher than that in camel milk, 200 while numbers of other kinds of lipids in camel milk and cow milk do not show 201 significant differences. When compared with other kinds of lipids, contents of TG 202 identified from camel milk and cow milk is the highest. This result is same with other 203 reports (Robert, 2002). In Alxa Bactrian camel milk, number of TG also is the highest, 204 and followed by DG, PE and SM (Xiao, 2022), which is similar with our results. 205 Moreover, content of TG in cow milk is higher than that in camel milk, and it means 206 cow milk is more suitable for the production of infant formula milk powder than camel 207 milk, because TG can well meet the energy requirements for the growth of infants and 208 young children (Xiao, 2022).

209 Junggar Bactrian camel milk were analyzed in this study, and lipid in camel milk 210 also can be affected by the different breeds of camel, as we all know. In Alxa Bactrian camel milk from different lactation periods, totally 980 kinds of lipids have been 211 212 identified, and were divided into 24 classes (Xiao, 2022). Furthermore, 353 lipids were 213 determined in milk fat globule membrane of Alxa Bactrian camel milk (He et al., 2024). 214 However, although analytical method used in the present study is same with the literatures (Xiao, 2022; He et al., 2024), only 669 kinds of lipids have been detected in 215 216 this study. Therefore, these great differences could be mainly ascribed to the differences 217 of camel breed and living environment (Xiao, 2022).

Many kinds of fatty acid chains are included in lipids (**Table S1**), and these fatty acids contain 4 to 44 carbons, and the highest number of double bonds is up to 6. Among the lipids detected (**Figure 2A**), 299 kinds of fatty acids are identified, and type of occurrences of short-chain fatty acids is 63, while 21, 372 and 213 for types of mediumchain fatty acids, long-chain fatty acids, and very-long chain fatty acids, respectively. C16:0, C18:0 and C15:0 occur most frequently, and then followed by unsaturated fatty acids C16:1 and C18:1. Saturated fatty acids, especially C12:0, C14:0 and C16:0, are associated with elevated cholesterol levels and increased risk of cardiovascular diseases
(Sun et al., 2007). The unsaturation of unsaturated fatty acids is from 1 to 6 (Figure
227 2B). The polyunsaturated fatty acids have positive impacts on cardiovascular diseases,
platelet aggregation, cancer, and various immune diseases (Siscovick et al., 2017).

229 According to former reports, camel milk contains lower saturated and higher 230 unsaturated fatty acids, which help to the higher antioxidant activity and angiotensin-1 231 converting enzyme inhibitory potential after simulated gastro-intestinal digestion when 232 compared to cow milk (Magsood et al., 2019). Especially, content of unsaturated fatty 233 acids in camel is 37.29%, and 14 kinds of fat acids have been determined from Alxa 234 Bactrian camel milk, and the contents of oleic acid, stearic acid, and palmitic acid are 235 31.03%, 26.48% and 21.85%, respectively (Yun et al., 2013). Furthermore, palmitic acid also is considered as the feature fat acid of camel milk (Wen, 2023). In the present 236 study, oleic acid, stearic acid, and palmitic acid have been detected in cow milk and 237 camel milk, and they exist in the form of TG, DG, LPC, LPE, LPI, PC, PE, PI, PS, Cer, 238 239 and SM, as showed. Most of them exist in the form of TG.

240

241 Multivariate statistical analysis of lipidomics in camel milk and cow milk

242 PCA is an unsupervised data analysis method, which can reflect the variability 243 between and within groups. According to the result of PCA (Figure 3A), 6 batches of 244 cow milk and 6 batches of camel milk are distinguished clearly. As listed in the OPLS-245 DA score plot (Figure 3B), the lipids of camel milk and cow milk are classified 246 distinctly, and the parameter classifications are R2Y = 0.997, and Q2 = 0.958, which 247 demonstrated that the model of used was credible and not overfitted. When analyzed by PLS-DA, these two different milk samples also are separated completely (Figure 248 **3C**), and the parameter classifications are R2Y = 0.998, and Q2 = 0.941 after a 5-fold 249

cross-validation, which indicated that the model used is proper. All these results tell that three statistical analysis method can distinguish camel milk from cow milk based on the lipids profiles, and lipids in camel milk are different from lipids in cow milk. In a former study, lipids in three kinds of milk samples have been distinguished using OPLS-DA model, and as a result human and cow milk can be distinguished correctly, while caprine and cow milk can not (Lina et al., 2020).

- 256
- 257

Identification of differential lipids between camel milk and cow milk

Differential lipids are selected by both univariate statistical analysis (Fold Change 258 259 Analysis) and PLS-DA, and the standards of differential lipids are fold change >2 or 260 fold change <0.5, P <0.05, and VIP >1. As the result, 70 kinds of lipids are selected as differential lipids, containing 1 Cer, 1 CerG1, 21 PCs, 10 PEs, 8 PIs, 8 PSs, 11 SMs, 261 262 and 10 TGs, as listed in Table 2. These differential lipids are mainly composed with unsaturated long-chain fatty acids and very-long chain fatty acids. Fold change values 263 of 8 TGs, 3 SMs and 1 PI are more than 1, and these 12 differential lipids are TG 264 265 (16:0e/18:1/18:1), TG(20:0p/16:0/16:0), TG(16:0/14:0/22:6), TG(15:0/18:1/20:5), 266 TG(15:0/18:1/20:5) isomers. TG(18:2/17:1/18:2), TG(18:0e/ 18:1/18:1), 267 TG(18:0/16:0/22:6), SM (d43:4), SM (d44:4), SM (d22:1+hO/18:0), and PI(18:0/20:3) 268 isomers. This result means that contents of these 12 lipids referred are higher in camel 269 milk than that in cow milk.

TG, which is composed of a glycerol main chain and three fatty acid chains, is an important part of lipid nucleus in milk fat globule and plays an important role in metabolism and energy stores (Melissa et al., 2019). Furthermore, number of TG identified from cow milk are more than two times higher than camel milk. Among all lipids identified (**Figure 4A**), TG(16:0/18:1/18:1) shows the highest content in camel milk, which is same with the result of Xiao (2022), while TG(6:0/14:0/16:0) shows the
highest content in cow milk.

277 SM, as a key lipid species in milk fat globule, is important for controlling intestinal 278 microbial interactions and myelin production in the central nervous system (Ghn et al., 279 2019). Camel milk contains more SM (d43:4), SM (d44:4) and SM (d22:1+hO/18:0) 280 than cow milk, and this is not similar with the analysis with lipids in milk fat globule 281 of camel milk (He et al., 2024). Thus, when compared with camel milk, higher content 282 of SM (d43:4), SM (d44:4) and SM (d22:1+hO/18:0) would featured camel milk.

PI also is an bioactive lipid in milk, and may contribute to the anti-inflammatory and immunoenhancement activity of milk (Xiao, 2022). PI(18:0/20:3) isomers has been reported in Alxa Bactrian camel milk, and camel milk contains more PI(18:0/20:3) isomers than cow milk from Alxa, Inner Mongolia, China (He et al., 2024). This result is same with our study.

Therefore, determination of TG(16:0/18:1/18:1), TG(6:0/14:0/16:0), SM (d43:4), 288 289 SM (d44:4), SM (d22:1+hO/18:0), and PI(18:0/20:3) isomers could be a potential 290 method for the identification of dairy products adulteration. Now, the qualitative and 291 quantitative analysis of lipid have not been finished completely, which would become 292 useful used in the analysis of food composition and will contribute to the in-depth study 293 of lipid function. It also offer some foundation for the process of camel milk, because 294 during the heating process the oxidative hydrolysis of lipids is one of the important 295 factors affecting the nutrition, quality, and safety of milk and milk products.

296

Hierarchical cluster analysis and analysis of lipid metabolism-related
 pathways

In order to visualize relationship of these different milk samples and the profile of differential lipids identified in different batches of milk samples, a heat map visualization and hierarchical analysis of the 70 lipids that differed significantly between camel and cow milk samples is shown in Figure 4B. Notably, 6 batches of camel milk clustered into one group, and 6 batches of cow milk clustered into the other group.

306 Camel, cow, and sheep all are ruminants, and they have different lipid synthesis 307 pathway with non-ruminant animals, referred as acetate and β -Hydroxybutyrate are the 308 principal precursors of fat acid chains with C4-C16 in ruminant animals, while sugar in 309 blood is the principal precursors of fat acids in non-ruminant animals (Bakry et al., 310 2021). All differential lipid metabolites in camel and cow milk were subjected to 311 enrichment analysis in RaMP library, as showed in **Figure 5** and **Table S1**.

312 These differential lipids were primarily found to be associated with synthesis of 313 PS, acyl chain remodelling of PS, synthesis of PE, glycerolipids and 314 glycerophospholipids, glycerophospholipid biosynthetic pathway, glycerophos 315 pholipid biosynthesis, phospholipid metabolism, and metabolism of lipids. PC, PS, and 316 PE are all involved in glycerophospholipid metabolism, with glycerophospholipids 317 playing vital roles in cell metabolism, signal transduction, and membrane transport (Liu 318 et al., 2023). According to the results of this study, there still are some differences on 319 the synthesis of fat acids and lipids between camel and cow, especially about TG, PI 320 and SM, and these differences should be analyzed by other omics methods, and no 321 information is given when analyzed according to lipidomics data mainly due to the 322 limitation of database.

323 Conclusions

324	In conclusion, the non-targeted lipid relative quantitative analysis of Holstein
325	cow milk and Junggar Bactrian camel milk was carried out by UPLC-MS/MS
326	technology, and 669 kinds of lipids are identified in total. In results of PCA, PLS-DA,
327	and OPLS-DA. Six batches of camel milk and six batches of cow milk are separated
328	well, and 70 kinds of differential lipids are selected out, containing 1 Cer, 1 CerG1,
329	21 PCs, 10 PEs, 8 PIs, 8 PSs, 11 SMs, and 10 TGs. In hierarchical cluster analysis,
330	camel milk samples and cow milk samples also are clustered well. All these results
331	illustrated that there are many different lipids, and camel milk contains more SM
332	(d43:4), SM (d44:4), TG(20:0p/16:0/16:0), TG(16:0/14:0/22:6), TG(15:0/18:1/20:5),
333	TG(15:0/18:1/20:5) isomers, TG(18:2/17:1/18:2), TG(18:0e/18:1/18:1),
334	TG(18:0/16:0/22:6), SM (d22:1+hO/18:0), and PI(18:0/20:3) isomer than cow milk,
335	which can be used as potential biomarker to distinguish camel milk from cow milk.
336	Our study shows the lipid profile of camel milk and cow milk from Xinjiang province
337	of China, as well as their differential lipids, which can provide foundation for the
338	utilization of lipids from camel milk, and provide a potential reference for the camel
339	milk and dairy products adulteration.
340	

341 **References**

Ali M. S. G., & Omar M. I. (2001). Fatty acids and lipids of camel milk and colostrum

- 343 [J]. Int J Food Sci Nutr, 52(3): 183-287. doi.org/10.1080/0963 7480020027000-3
 344 -5.
- 345 Bakry I. A., Yang L., Farag M. A., Mohamed A. F., Sameh A. K., Ibrahim K., Ilaria
- 346 C., Noha I. Z., Jun J., Qingzhe J., Wei W., & Xingguo W. (2021). A comprehensi

347	ve review of the composition, nutritional value, and functional properties of camel
348	milk fat [J]. Foods, 10(9): 2158-2185. doi.org/10.3390/foods10092158.
349	Bang G., Kim Y. H., Yoon J., Yu Y. J., Chung S., & Kim J. A. (2017). On-Chip lipid
350	extraction using superabsorbent polymers for mass spectrometry [J]. Anal Chem,
351	89(24), 13365-13373.
352	Ghn A., Mm B., Mcm B., & Cnb A. (2019). Protective properties of milk sphingomyelin
353	against dysfunctional lipid metabolism, gut dysbiosis, and inflammation [J]. J Nutr
354	Biochem, 73: 108224-108224. doi.org/10.1016/j.jnutbio.2019.108224.
355	He J, Si R, Wang Y, Ji R, Ming L. (2024). Lipidomic and proteomic profiling identifies
356	the milk fat globule membrane composition of milk from cows and camels [J].
357	Food Res Int, 179: 113816. doi.org/10.1016/j.foodres.2023.113816.
358	Ibrahim AB, Wei W, Mohamed AF, Sameh AK, Ibrahim K, Noha IZ, Hanan KM, Jun J,
359	Xingguo W. (2023). How does camel milk fat profile compare with that of human
360	milk fat to serve as a substitute for human milk? [J]. Inter Dairy J, 146: 105738.
361	doi.org/10.1016/j.idairyj.2023.105738.
362	Li L. (2019). Research on therapeutic effect of fat in camel milk on rheumatoid arthritis
363	[D]. Inner Mongolia Agricultural University.
364	Lina W., Xiaodong L., Lu L., Hong D. Z., Yu Z., Yu H. C., & Qi P. Z. (2020). Compar
365	ative lipidomics analysis of human, bovine and caprine milk by UHPLC-Q-TOF-
366	MS [J]. Food Chem, 310, 125865. doi.org/10.1016/j. foodchem.2019.125865.
367	Liu Y., Guo X., Wang N., Lu S., Dong J., Qi Z., & Wang Q. (2023). Evaluation of
368	changes in egg yolk lipids during storage based on lipidomics through UPLC-

369	MS/MS [J]. Food Chem, 398: 133931. doi.org/10.1016/j.foodchem.2022.133931.
370	Lordan, R., & Zabetakis, I. (2017). Invited review: The anti-
371	inflammatory properties of dairy lipids. J Dairy Sci, 100(6): 4197-
372	4212. doi.org/10.3168/ jds.2016-12224.
373	Maqsood S., Al-
374	Dowaila A., Mudgil P., Kamal H., Jobe B., & Hassan H. M. (2019). Comparative
375	characterization of protein and lipid fractions from camel and cow milk, their fun
376	ctionality, antioxidant and antihypertensive properties upon simulated gastro-
377	intestinal digestion. Food Chem, 279, 328-
378	338. doi.org/10.1016/j.foodchem.2018.12.011.
379	Melissa R. P., Fidel S. P., Sheher B. M., Jonathon H., & Stephanie M. C. (2019). Lipid
380	omic analysis reveals altered fatty acid metabolism in the liver of the symptomati
381	c niemann-
382	pick, yype C1 mouse model. Proteomics, 19(18): 1800285. doi.org/10.1002/pmic.
383	201800285.
384	Miao J., Xiao S., Wang J. (2023). Comparative Study of Camel Milk from Different A
385	reas of Xinjiang Province in China [J]. Food Sci Anim Resour, 43(4): 674-
386	684. doi.org/10.5851/kosfa.2023.e27.
387	Ming L., Li Y. F., Lyu H., Hosblig, & Yi L. (2023). Chemical Composition and
388	Proteomics of Camel Milk at Different Lactation Stages [J]. Food Science.
389	http://kns.cnki.net/kcms/detail/11.2206.TS.20231215.1713.018.html.
390	Robert G. J. (2002). The composition of bovine milk lipids [J]. J Dairy Sci, 85(2): 295-

350. doi.org/10.3168/jds.S0022-0302(02)74079-4. 391

- Sioriki E., Smith T. K., Demopoulos C. A., & Zabetakis I. (2016). Structure and cardi 392 393 oprotective activities of polar lipids of olive pomace, olive pomace-394 enriched fish feed and olive pomace fed gilthead sea bream (Sparus aurata). Food Res Int, 83(5): 143–151. doi.org/10.1016/j.foodres.2016.03.015. 395 396 Siscovick D. S., Barringer T. A., Fretts A. M., Wu J. H. Y., Lichtenstein A. H., Costell 397 R. В., & Mozaffarian D. (2017). Omega-0 3 polyunsaturated fatty acid (Fish Oil) supplementation and the prevention of clin 398 ical cardiovascular disease: A science advisory from the american heart associatio 399 400 n. Circulation, 135(15): e867-e884. doi.org/10.1161/CIR.00000000000482. 401 Sun Q., Ma J., Campos H., & Hu F. B. (2007). Plasma and erythrocyte biomarkers of dairy fat intake and risk of ischemic heart disease [J]. The Amer J clin Nut, 86(4): 402 929-937. doi.org/10.1093/ajcn/86.4.929. 403 Wang F., Chen M., Luo R., Huang G., Wu X., Zheng N., Zhang Y., Wang J. (2022). 404 405 Fatty acid profiles of milk from Holstein cows, Jersey cows, buffalos, yaks, humans, goats, camels, and donkeys based on gas chromatography-mass spectrometry [J]. J 406 Dairy Sci, 105(2): 1687-1700. doi.org/10.3168/jds.2021-20750. 407 408 Wen R. (2023) Study on the variance of lipid and fat-soluble vitamins in non-bovien 409 milks and its fermented milk in WEt China [D]. northwest Agriculture and Forestry 410 University. 411 Xiao Z. Y. (2022). Research on differences in protein, metabolite, and lipid composition 412 of camel milk during lactation based on omics technologies [D]. Inner Mongolia

413 Agricultural University.

- 414 Xu Y. D., Hong H. H., Lin X. Q., Tong T., Zhang J. J., He H. T., Yang L. L., Mao G. F.,
- 415 Hao R. R., Deng P., Yu Z. P., Pi H. F., Cheng Y., Zhou Z. (2023). Chronic cadmium
- 416 exposure induces Parkinson-like syndrome by eliciting sphingolipid disturbance
- 417 and neuroinflammation in the midbrain of C57BL/6J mice [J]. Environmental
- 418 Pollution, 337: 122606. doi.org/10.1016/j.envpol.2023.122606.
- 419 Yun W. U., Quan S., Li X. L., Wu X. Y., Wuni M. H., & Yu Y. (2013). Fatty acid comp
- 420 osition of Alxa bactrian camel hump fat [J]. China Oils and Fats, 38(12): 88-
- 421 90. doi.org/10.3969/j.issn.1003-7969.2013.12.022.

Tables and Figures

Groups		Place of origin	Purchasing Agency		
	Camel 1	Midong district of	Milk mixture of 35 camels of a local family		
	Callel-1	Urumqi city	of nomads		
	Camel_2	Dabancheng district of	Milk mixture of 9 camels of a local family of		
	Callel-2	Urumqi city	nomads		
	Camel_3	Midong district of	Milk mixture of 11 camels of a local family		
Camel	Camer-3	Urumqi city	of nomads		
milk	Camal 4	Changji city of Changji	Milk mixture of 6 camels of a local family of		
	Camer-4	region	nomads		
	Camel 5	Jeminay county of of	Milk mixture of 54 camels of a local family		
	Camer-J	Altay region	of nomads in Wantuo Garden		
	Camal 6	Yiwu county of Hami	Milk mixture of 52 camels of a local family		
	Camer-o	region	of nomads		
	Cow-1	Midong district of	Milk mixture of 10 cows of a local family of		
		Urumqi city	nomads		
	Cow-2	Dabancheng district of	Milk mixture of 13 cows of a local family of		
		Urumqi city	nomads		
	Cow-3	Fukang city of Changji	Milk mixture of 6 cows of a local family of		
Cow	COW-5	region	nomads		
milk	Cow 4	Changji city of Changji	Milk mixture of 9 cows of a local family of		
	C0w-4	region	nomads		
	Cow 5	Jeminay county of of	Milk mixture of 21 cows of a local family of		
	COW-3	Altay region	nomads		
	Cow-6	Yiwu county of Hami	Milk mixture of 10 cows of a local family of		
		region	nomads		

424 Table 1. Information of camel milk and cow milk samples collected from different areas

Table 2. Differential lipids selected from camel milk and cow milk	

Lipid	Fold Change	P value	VIP	Type of lipid
PE(16:0/18:1)	0.25309	0.0025259	1.01970737	PE
PE(16:0/20:4)	0.15995	0.0026412	1.00830031	PE
PS(18:0/16:1)	0.19935	0.0051777	1.116523874	PS
PS(18:0/18:1)	0.32328	0.0033796	1.044887608	PS
PC(18:0/16:0)	0.26896	0.0031288	1.063964627	PC
PS(18:0/20:3)	0.22012	0.0020539	1.006795602	PS
SM(d39:1)	0.19196	0.0026884	1.023107395	SM
PI(16:0/18:1)	0.22664	0.0035707	1.063223089	PI
SM(d32:1)	0.48353	0.0093506	1.128564204	SM
SM(d35:4)	0.49487	0.020952	1.320660195	SM
SM(d36:3)	0.28469	0.0020427	1.060805023	SM
SM(d36:2)	0.48188	0.045415	1.180984105	SM
PC(32:2) isomers	0.40786	0.0039475	1.079901437	PC
PC(32:1) isomers	0.33675	0.0063529	1.061210879	PC
PC(32:2)	0.44533	0.0075071	1.166917013	PC
PC(32:1)	0.41543	0.004971	1.145357814	PC
PE(18:0p/20:3)	0.45546	0.033668	1.260402519	PE
PC(34:2)	0.36726	0.0054166	1,194271727	PC
SM(d38:1)	0.36308	0.0022285	1.006439614	SM
PC(33:0)	0.44202	0.012582	1.193822157	PC
PC(35:1)	0.48624	0.0075943	1.186496428	PC
PC(35:0)	0.48198	0.014578	1 2305842	PC
TG(15:0/14:0/16:1)	0 3097	0.008346	1 036468064	TG
PC(36:3)	0.37843	0.0034672	1 135846161	PC
PC(36:3) isomers	0.37619	0.0076136	1 14531328	PC
CerG1(d38.1+hO)	0.10257	0.0070130	1.015455237	CerG1
TG(15:0/14:0/18:3)	0.10257	0.0054697	1 106002447	TG
PC(38.5)	0.40702	0.0054077	1.152086/36	PC
PC(38:4)	0.31377	0.003910	1.132380430	PC
SM(d43.4)	2 5167	0.02403	1.343120074	SM
PC(38.5) isomers	0.40066	0.017208	1.309238008	
$SM(d44\cdot4)$	0.40000	0.030109	1.520600495	FC SM
$TG(16.0_{e}/18.1/18.1)$	4.3197	0.0038818	1.103209473	
PI(26:2)	0.4304	0.0043916	1.104243233	
FI(30.2)	0.45595	0.0111/3	1.14/31//94	PI TC
TG(20:0p/10:0/10:0) TG(16:0/14:0/22:6)	6.1591	0.0045188	1.145231807	IG
IG(10:0/14:0/22:0)	2.1428	0.046183	1.393556905	IG
PI(30:2) isomers 1 TC(15:0(18:1/20:5))	0.42886	0.0079825	1.149268005	PI
IG(15:0/18:1/20:5)	2.4988	0.03/09/	1.388536/3	IG
1G(15:0/18:1/20:5) isomers	2.7951	0.03552	1.130337837	TG
IG(18:2/1/:1/18:2)	2.4223	0.041155	1.387784722	TG
PI(36:2) isomers 2	0.40303	0.0055327	1.187322474	PI TTT
TG(18:0e/18:1/18:1)	7.1976	0.013502	1.290160035	TG
TG(18:0/16:0/22:6)	2.8339	0.041309	1.252979471	TG
Cer(d16:1/22:0)	0.4285	0.0046595	1.019762745	Cer
PE(16:0/16:1)	0.36871	0.0063953	1.146101909	PE
PE(15:0/18:1)	0.32294	0.0031315	1.013861544	PE
PE(16:1/18:1)	0.27306	0.0046592	1.070492673	PE
PE(17:0/18:2)	0.43123	0.0057484	1.110006911	PE

SM(d33:1)	0.48583	0.0090071	1.163648046	SM
PE(18:1/18:2)	0.35939	0.0062357	1.012923978	PE
PS(34:3)	0.38212	0.0058944	1.129656914	PS
PE(18:1/20:3)	0.17809	0.020747	1.070505286	PE
PE(20:1/18:1)	0.38611	0.035727	1.25359712	PE
PC(14:0/18:2)	0.45432	0.011393	1.057459718	PC
PC(16:0/16:1)	0.41245	0.0064837	1.069792082	PC
PS(18:2/18:2)	0.32335	0.0028439	1.02971887	PS
PC(15:0/18:1)	0.36541	0.0034178	1.006341343	PC
PS(37:4)	0.3765	0.0048371	1.039158331	PS
PS(37:3)	0.4909	0.024573	1.317344351	PS
PC(16:0/18:2)	0.44868	0.0059025	1.104107353	PC
PS(20:1/18:1)	0.24173	0.01809	1.100185404	PS
PC(17:0/18:2)	0.4845	0.024175	1.186291059	PC
PI(16:0/18:2)	0.30176	0.0038736	1.070089487	PI
SM(d22:1+hO/18:0)	2.3738	0.0048732	1.051158985	SM
PC(18:1/20:4)	0.38436	0.013085	1.10206223	PC
PC(18:0/20:3)	0.45775	0.025288	1.17596455	PC
PI(18:1/18:1)	0.46048	0.01054	1.114126653	PI
PI(18:0/20:3)	0.47224	0.017549	1.016683377	PI
PI(18:0/20:3) isomers	2.4697	0.013091	1.028695068	PI
SM(d31:1)	0.45072	0.0098512	1.17322489	SM

433 434 Figure 1 Lipids identified from camel milk and cow milk. (A) Numbers and classes of lipids 435 identified in camel milk and cow milk, (B) Contents of lipids in 16 classes identified from camel 436 milk and cow milk. (letters a and b mean show significant difference at p<0.05 level, Cers for 437 ceramides, CerG1s for glycosphingolipids, CerG2s for diglucose ceramide, DGs for 438 diacylglycerides, LPCs for lysophosphatidylcholines, LPEs for lysophosphatidy-lethanolamine, 439 LPIs for lysophosphatidylinositol, PC for phosphatidylcholines, PE for 440 phosphatidylethanolamines, PG for phosphatidylglycerols, PI for phosphatidylinositol, PS for 441 phosphatidylserines, SM for sphingomyelins, So for sphingosines, TG for triacylglyceri-des, WE 442 for wax ester)

443 444 **Figure 2** Fatty acid in lipids of camel milk and cow milk. (A) Type of different fatty acids, (B)

445 Types of fatty acids with different unsaturation. (SCFA for short-chain fatty acid, MCFA for

446 medium-chain fatty acid, LCFA for long-chain fatty acids, and VLCFA for very-long chain fatty

447

acid)

Component1 (83.3%)

448 449 Figure 3 Multivariate statistical analysis of lipomics in camel milk and cow milk (A: PCA score 450 plot, B: OPLS-DA score plot, C: PLS-DA score plot. t[1] represents the principal component 1, 451 t[2] represents the principal component 2, and the ellipse represents the 95% confidence interval.

- 452 The dots of the same shape represent the biological repetitions in the group, and the distribution of
- 453

the dots reflects the degree of difference between and within groups.)

454 (A)

Figure 4 Differential lipids in camel milk and cow milk. (A) Dynamic distribution map of lipids
in camel milk and cow milk, (B) Hierarchical clustering heatmap of milk samples and differential

Figure 5 Enrich

461 462

Figure 5 Enrichment analysis of significant lipid biosynthetic pathways

463 Supplementary material

464 Fig. S1 TIC spectrograms in Positive mode of three QC samples

Fig. S2 Correlation coefficients of three batches of QC samples 0.999 0.999 0 QC-1 ņ 9-0.999 1.000 ŝ 0 QC-2 φ. 9-0.999 1.000 2 0 QC-3 ņ 10 -5 0 -10 5 -10 -5 0 5

Fig. S3 PCA result of three bateches of QC samples

Fig. S4 Hotelling T2 test of QC samples, camel milk samples, and cow milk samples

Table S1 Result from Over Representation Analysis of Enrichment Analysis

	total	expected	hits	Baw p	Holm p	FDR
Disinhibition of SNARE formation	5	0.00	1	1.17E-03	1.00E+00	6.34E-01
Activation of NE-kappaB in B calls	5	0.00	1	1.17E-03	1.00E+00	6.34E-01
WNT5A-dependent internalization of	5	0.00	1	1.17E-03	1.00E+00	6.34E-01
FZD4		0.00	-	1.1111 000	10011 00	0.0417.01
Synthesis of PS	6	0.00	1	1.40E-03	1.00E+00	6.34E-01
Trafficking of AMPA receptors	6	0.00	1	1.40E-03	1.00E + 00	6.34E-01
Trafficking of GluR2-containing AMPA	6	0.00	1	1.40E-03	1.00E + 00	6.34E-01
receptors						
SHC1 events in ERBB2 signaling	8	0.00	1	1.87E-03	$1.00E \pm 00$	6.34E-01
Glutamate binding, activation of AMPA	8	0.00	1	1.87E-03	1.00E + 00	6.34E-01
receptors and synaptic plasticity						
PCP/CE pathway	8	0.00	1	1.87E-03	1.00E + 00	6.34E-01
Downstream signaling events of B Cell	9	0.00	1	2.10E-03	1.00E + 00	6.34E-01
Receptor (BCR)						
Acyl chain remodelling of PS	9	0.00	1	2.10E-03	1.00E + 00	6.34E-01
Scavenging by Class H Receptors	11	0.00	1	2.57E-03	1.00E + 00	6.74E-01
G alpha (z) signalling events	13	0.00	1	3.04E-03	1.00E + 00	6.74E-01
Response to elevated platelet cytosolic	13	0.00	1	3.04E-03	1.00E + 00	6.74E-01
Ca2+						
Signaling by the B Cell Receptor (BCR)	14	0.00	1	3.27E-03	1.00E + 00	6.74E-01
Scavenging by Class B Receptors	15	0.00	1	3.50E-03	1.00E + 00	6.74E-01
Ca2+ pathway	16	0.00	1	3.74E-03	1.00E + 00	6.74E-01
Ion transport by P-type ATPases	16	0.00	1	3.74E-03	1.00E + 00	6.74E-01
Beta-catenin independent WNT signal-	17	0.00	1	3.97E-03	1.00E + 00	6.74E-01
ing						
Immunoregulatory interactions between	19	0.00	1	4.44E-03	1.00E + 00	6.74E-01
a Lymphoid and a non-Lymphoid cell						
Signaling by ERBB2	19	0.00	1	4.44E-03	1.00E + 00	6.74E-01
Synthesis of PE	20	0.00	1	4.67E-03	1.00E + 00	6.74E-01
Kennedy pathway from sphingolipids	20	0.00	1	4.67E-03	1.00E + 00	6.74E-01
Neurotransmitter receptors and postsy-	25	0.01	1	5.84E-03	1.00E + 00	7.45E-01
naptic signal transmission						
Ion channel transport	25	0.01	1	5.84E-03	1.00E + 00	7.45E-01
Signaling by WNT	25	0.01	1	5.84E-03	1.00E + 00	7.45E-01
Glycerolipids and glycerophospholipids	28	0.01	1	6.54E-03	1.00E + 00	8.03E-01
Scavenging by Class A Receptors	30	0.01	1	7.01E-03	1.00E + 00	8.30E-01
Platelet activation, signaling and aggre-	32	0.01	1	7.47E-03	1.00E + 00	8.55E-01
gation						
Binding and Uptake of Ligands by Scav-	39	0.01	1	9.11E-03	1.00E + 00	1.00E+00
enger Receptors						
Adaptive Immune System	53	0.01	1	1.24E-02	1.00E + 00	1.00E+00
Glycerophospholipid biosynthetic path-	54	0.01	1	1.26E-02	1.00E + 00	1.00E+00
way	ļ	ļ	ļ			ļ
Signaling by Receptor Tyrosine Kinases	62	0.01	1	1.45E-02	1.00E + 00	1.00E+00
Vesicle-mediated transport	63	0.01	1	1.47E-02	1.00E + 00	1.00E+00
Transmission across Chemical Synapses	77	0.02	1	1.80E-02	1.00E + 00	1.00E+00
Neuronal System	77	0.02	1	1.80E-02	1.00E + 00	1.00E+00
Hemostasis	82	0.02	1	1.92E-02	1.00E + 00	1.00E+00
Glycerophospholipid biosynthesis	97	0.02	1	2.27E-02	1.00E + 00	1.00E+00
Phospholipid metabolism	105	0.02	1	2.45E-02	1.00E + 00	1.00E+00
Immune System	155	0.04	1	3.62E-02	1.00E + 00	1.00E+00
GPCR downstream signalling	156	0.04	1	3.64E-02	1.00E + 00	1.00E+00
Transport of small molecules	208	0.05	1	4.86E-02	1.00E + 00	1.00E+00
Signaling by GPCR	236	0.06	1	5.51E-02	1.00E + 00	1.00E+00
Signal Transduction	345	0.08	1	8.06E-02	1.00E + 00	1.00E+00
Metabolism of lipids	608	0.14	1	1.42E-01	1.00E + 00	1.00E+00
Metabolism	1370	0.32	1	3.20E-01	1.00E + 00	1.00E+00