1	TITLE PAGE
- Food	Science of Animal Resources -
3 Unload this c	ompleted form to website with submission
4 Opicia ins s	
ARTICLE INFORMATION	Fill in information in each box below
Article Type	Research article
Article Title	Growth characteristics, blood biochemistry, histology, and metabolic profile of
	muscle and different tissues: I oxicity study of deoxynivalenol
Running Title (within 10 words)	Effect of deoxynivalenol in growing pigs
Author	Jin Young Jeong ^{1,*} , Junsik Kim ¹ , Minji Kim ¹ , and Sungkwon Park ¹
Affiliation	¹ Animal Nutrition and Physiology Division, National Institute of Animal Science,
	Wanju 55365, Republic of Korea
	² Department of Food Science and Biotechnology, Sejong University, Seoul
	05006, Republic of Korea
Special remarks – if authors have additional	Corresponding Author
information to inform the editorial office	
ORCID (All authors must have ORCID)	Jin Young Jeong (https://orcid.org/0000-0002-8670-7036)
https://orcid.org	Junsik Kim (https://orcid.org/0000-0001-9092-757X) Minii Kim (https://orcid.org/0000-0003-2106-1921)
	Sungkwon Park (https://orcid.org/0000-0002-7684-9719)
Conflicts of interest	The authors declare no potential conflict of interest
List any present or potential conflict s of	
interest for all authors.	
(This field may be published.)	
Acknowledgements	This research was funded by the Cooperative Research Program for
State funding sources (grants, funding	Agriculture, Science, and Technology Development (Project No. PJ015002),
sources, equipment, and supplies). Include	Rural Development Administration, Republic of Korea, and the 2024 RDA
name and number of grant if available.	fellowship program of the National Institute of Animal Sciences, Rural
(This field may be published.)	Development Administration, Republic of Korea.
(This field may be published)	Conceptualization: Jeong JY.
(This held may be published.)	Formal analysis: Jeong JY
	Methodology: Kim J.
	Software: Jeong JY.
	Validation: Park S.
	Investigation: Jeong JY.
	Writing - original draft: Jeong JY, Kim J.
Ethics approval (IBP/IACLIC)	Writing - review & editing: Jeong JY, Kim J, Kim M, Park S.
(This field may be published)	Institutional Animal Care and Use Committee of the National Institute of Animal
(This field may be published.)	Science, Korea (No. NIAS-2020-0479).
5	1
CORRESPONDING AUTHOR CONT	ACT INFORMATION
For the corresponding author	Fill in information in each box below
(responsible for correspondence,	
First name middle initial last name	lin Young Joong

jeong73@korea.kr

jeongjinyoung73@gmail.com Wanju 55365, Republic of Korea

Email address - this is where your proofs

will be sent

Postal address

Secondary Email address

Cell phone number	+82-10-9754-5880
Office phone number	+82-63-238-7487
Fax number	+82-63-238-7497

Abstract

10 Deoxynivalenol (DON) toxicity causes oxidative stress, immunological disorders, and 11 gastrointestinal injury, which reduce animal survival and productivity. Pigs are particularly 12 susceptible to DON; therefore, clear standards for DON levels in animal feed are essential. 13 Therefore, we investigated growth characteristics, biochemistry, histology, and metabolite 14 profiles of growing pigs fed dietary DON levels. Twelve pigs were randomized to one of four 15 diets for 28 d: 1) CON, control group fed conventional diets; 2) T1, 1 mg; 3) T2, 3 mg; and 4) 16 T3, 10 mg DON/kg conventional diet. The results revealed that the final body weight of the 17 growing pigs in the T3 group was the lowest of all DON-treated groups (p < 0.05). Additionally, the T3 group demonstrated the highest blood alkaline phosphate levels, whereas the T2 and T3 18 19 treatment groups exhibited reduced lipase levels compared to the other groups (p < 0.01). 20 Histological analysis showed that fibrosis increased in the muscle, liver, and various tissues, while apoptosis increased in the liver and ileum with increasing DON levels. Metabolomic 21 22 profiling revealed that several metabolic pathways, such as purine metabolism, were involved in the weight loss induced by DON toxicity. In conclusion, our study suggests that DON levels 23 24 above the maximum residue limits have adverse effects on growing pigs and that these effects are 25 caused by altered metabolites.

26 Keywords: growing pig, deoxynivalenol, histology, metabolite

29 Introduction

30 Mycotoxins are fungal secondary metabolites that frequently contaminate agricultural crops 31 worldwide and adversely affect farm animals (Abdallah et al., 2015; Holanda and Kim, 2021). 32 Deoxynivalenol (DON) is a type B trichothecene. It is produced by Fusarium species and is the 33 most frequently detected mycotoxin in feed samples (Kwon et al., 2023). DON toxicity can lead 34 to impairment of the immune system, oxidative stress, and damage to the gastrointestinal tract, 35 which can affect the survival and productivity of livestock (Holanda and Kim, 2020; Chen et al., 36 2023). According to the European Food Safety Authority (EFSA), 75.2% of EU feed samples 37 were contaminated with DON (EFSA, 2013). Furthermore, Gruber-Dorninger et al. (2019) 38 reported DON contamination in 64.1% of feed samples from 2008 to 2017. In response, the 39 maximum residue level for DON has been established by the US Food and Drug Administration 40 (FDA) in grain and grain byproducts for swine at < 5 mg/kg (FDA, 2010). In contrast, the 41 European Commission has set strict limits for capping DON levels in compound feeds for pigs at 42 0.9 ppm (European Commission, 2016). 43 Pigs, followed by mice, rats, poultry, and ruminants, are most susceptible to DON toxicity 44 (Zhao et al., 2016). This is likely because pigs consume cereal-rich diets and lack the rumen 45 microorganisms required to break down mycotoxins (Pierron et al., 2016; Jia et al., 2023). 46 Consequently, pigs exhibit a higher bioavailability of DON and a prolonged elimination period of 47 the toxin from the body compared to other animals (Schelstraete et al., 2020; Sun et al., 2022). A 48 notable consequence of DON toxicity in pigs is growth retardation (Pestka and Smolinski, 2005). 49 Symptoms such as diarrhea, vomiting, and anorexia result from ingestion of feed containing high 50 levels of DON, which reduces feed intake and efficiency (Pinton et al., 2009; Pestka et al., 2017). 51 Furthermore, DON causes oxidative stress through the generation of reactive oxygen species

(ROS), further compromising the immune system and causing histological alterations, including
fibrosis and apoptosis (Chaytor et al., 2011; Kang et al., 2022). DON toxicity disrupts several
metabolic processes, including glycolysis, protein biosynthesis, and cellular metabolism (Wang
et al., 2019; Saenz et al., 2021).

56 Despite extensive research, the effects of DON may be highly variable and depend on several 57 factors: the amount of toxin in the animal, its origin, the animal's age, duration of exposure, and 58 its simultaneous interaction with other substances (Serviento et al., 2018). Weaned piglets are 59 more vulnerable to DON toxicity because their intestines are less adapted to sudden changes in 60 feed. Many studies have focused on DON toxicity in piglets. However, as slow growth in pigs 61 results in reduced profitability, knowledge of the harmful effects of feed to pigs is important to 62 enable farmers to manage their diets effectively (López-Vergé et al., 2018). Determining the amount of DON in the diets of growing pigs is essential to reduce the risk of DON in pig 63 64 production. However, studies on DON toxicity in growing pigs are limited. The toxicity of DON in this study was evaluated at concentrations higher than the maximum residue level during the 65 growing period. We investigated the effects of different DON levels on histological alterations, 66 growth characteristics, and blood biochemistry of growing pigs. Additionally, this study explored 67 68 metabolites and their correlation with growth performance.

69

70 Materials and Methods

71 Ethics statement

The Committee on the Institutional Care and Use of Animals of the National Institute of
Animal Science of the Republic of Korea reviewed and approved all experimental procedures
(NIAS-2020-0479).

76 Animals and study design

77 Castrated pigs were sourced from Taeheung (Yeonggwang, Republic of Korea). Twelve pigs 78 (Landrace \times Yorkshire) were housed in individual pens measuring 130×240 cm. Housing 79 conditions were maintained throughout the study, including acclimation, according to the 80 following specifications: a light-dark cycle of 12:12 h, a room temperature of 25 ± 2 °C, and a 81 relative humidity of $60 \pm 5\%$. The pigs were divided into four groups as follows: the control 82 group received a basal diet, the T1 group received a basal diet with 1 mg/kg added DON, the T2 83 group with 3 mg/kg, and the T3 group with 10 mg/kg. Pigs had ad libitum access to water and 84 food for 4 weeks. Diets were supplemented with DON (TripleBond, Guelph, Ontario, Canada) 85 according to established experimental concentrations. Mycotoxins were dissolved with 1-5% 86 ethanol in an autoclaved sterilized beaker and stirred until completely dissolved. The solvent 87 amount was tested to ensure no impact on feed fluidity despite moisture content. At the end of the 88 experimental period, blood samples were taken 1 d before tissue sampling. T61 was used to 89 anesthetize all animals. Samples were taken from the feces, ileum, liver, muscle, rectum, and 90 urine immediately after exsanguination. Blood and debris were removed using phosphate-91 buffered saline (PBS) and sterile disposable wipes. Samples were rapidly frozen in liquid 92 nitrogen for storage at -80 °C. Additionally, tissue fixation for histologic analysis was performed 93 with 10% neutral buffered formalin (NBF; Sigma-Aldrich, St. Louis, MO, USA). The average 94 daily feed intake (ADFI), average daily gain (ADG), and feed conversion ratio (FCR) were 95 calculated as follows: 96 ADG = (final weight - initial weight)/age(d)

97 ADFI = feed supplied - feed remaining

98 FCR = feed consumed/ADG

100 Deoxynivalenol content analysis

Ultra-performance liquid chromatography (UPLC) mass spectrometry was used to analyze
DON in diets, as described previously (Jeong et al., 2024). Briefly, a 1 g homogenized DON
sample was extracted with water and diluted in PBS, then applied to the appropriate columns.
The diets contained 0.73, 2.61, and 9.52 mg/kg DON. The same diet was used as previously
described. The control sample had no DON contamination.

106

107 Blood biochemical analysis

108 Pig blood samples were taken in tubes from each growing pig via the jugular vein. Briefly,

109 serum was centrifuged at 700 x g for 15 minutes at 4 °C, then stored at -80 °C (Jeong et al.,

110 2024). Blood parameters, including glucose, creatine, blood urea nitrogen, phosphate, calcium,

111 total protein, albumin, globulin, alanine aminotransferase, alkaline phosphatase, total bilirubin,

112 cholesterol, amylase, and lipase levels, were analyzed using a VetTest chemistry analyzer

113 (IDEXX, Westbrook, ME, USA).

114

115 Histological analysis

Analysis of DON-induced fibrosis and apoptosis may improve our understanding of tissue damage and repair. Samples $(5 \times 5 \text{ mm})$ of liver, muscle, duodenal, ileal, rectal, jejunal, cecal, and colonic (ascending, transverse, and descending) tissues were collected as previously described (Jeong et al., 2024). Each sample was fixed in 10% NBF, dehydrated, embedded in paraffin, and heated. Slides were deparaffinized, rehydrated, and stained. They were then observed under a microscope at 200× and 400× magnifications.

122

123 Metabolite preparation and analysis of blood, liver, cecum, urine, and feces

124 UPLC-O-TOF MS was used to analyze changes in pig metabolites following DON-125 contaminated diets. Experimental pretreatment and analytical methods were carried out as 126 previously described (Jeong et al., 2024). Briefly, 100 µL serum was mixed with 400 µL acetone, 127 shaken, and the 400 μ L supernatant collected, lyophilized, then dissolved in 100 μ L 20% 128 methanol containing an internal standard. . Urine was treated the same way, while liver, cecum, 129 and feces samples were dissolved in 80% methanol with an internal standard. The resulting 130 solutions were analyzed by UPLC-Q-TOF MS. After metabolomic analysis, samples were 131 pooled. Samples were injected into an Acquity UPLC C18 column with a mobile phase of water 132 and acetonitrile. Blood, liver, cecum, feces, and urine took 12 mins; blood and urine at 40 °C 133 took 16 min. The eluted compounds were analyzed by MS in ESI mode. TOF-MS data were 134 scanned between 100 and 1500 m/z with 0.2 s scan time. Capillary and sample cones set at 3 and 40 V, 800 L/h desolvation flow, 300 °C desolvation temperature, and 100 °C source temperature. 135 136 Leu-Enk was used as the reference compound due to its low mass and was analyzed every 10 s. 137 QC samples were analyzed every 10 runs. MS/MS spectra were obtained at m/z 50-1500 using a 138 ramped collision energy. MS data were processed using MarkerLynx 4.1, including m/z, RT, and 139 intensity calculations. LC-MS data were acquired using MarkerLynx. Peak data were identified 140 using various parameters and normalized. Metabolites were identified using multiple databases 141 and relevant literature.

142

143 Statistical analysis

Metabolite data were analyzed with SIMCA-P+. PLS-DA was used to visualize the results.
PLS-DA using R2, Q2, and permutation tests. R2X/Y assessed the model fit; Q2, future data. The
PLS-DA results were validated using a permutation test. One-way ANOVA with Duncan test was
used to analyze metabolite abundances (p < 0.05). Heatmaps of identified compounds were

148 created in R using a color scale based on z-scores. Prism 9.5.1 was used to perform a one-way

149 ANOVA and Tukey's tests. The results are expressed as the mean \pm SEM. Statistical significance

150 was set at p < 0.05.

151

152 **Results**

153 *Growth performance*

Table 2 shows the impact of DON intake on 10-week-old pigs over 28 days. The control and DON treatment groups had similar initial body weights (BW) (34.5 ± 0.53 kg). The T3 group had the lowest final BW (46.4 ± 0.84 kg). ADFI, ADG, and FCR were not significantly different among the four diet groups.

158

159 Blood biochemistry

The effects of DON treatment on the biochemical parameters of the blood of growing pigs over a 28-day period are presented in Table 3. Blood parameters that did not differ significantly among dietary treatments were not reported. The levels of alkaline phosphate (ALKP) in the blood of growing pigs in the T3 group were the highest among the diet treatment groups (p =0.003). However, in the T3 group, the level of lipase (LIPA) was significantly lower than that of the other treatments (p = 0.007).

166

167 Histological analysis

Masson's trichrome staining was used to observe histological changes, including fibrosis, in the liver, muscle, duodenum, ileum, rectum, jejunum, cecum, and colon (ascending, transverse, and descending) (Fig. 1). Increased fibrosis was observed in the portal areas of the liver lobules formed by an envelope of fibrous connective tissue. In skeletal muscle, fibrosis was caused by 172 DON in the endomysium and blood vessels. In the duodenum, fibrosis was observed in the 173 muscularis mucosa and the submucosa. Blue staining was observed in the ascending colonic 174 mucosa. Fibrosis was also observed in other tissues. However, these differences were minimal 175 and difficult to detect. The TUNEL staining results, performed to observe apoptosis in the liver 176 and ileum, are shown in Fig. 2. The figures represent $200 \times$ and $400 \times$ magnified images. The 177 DON group showed more TUNEL-positive staining than the control group, suggesting severe 178 apoptosis. DON increased fibrosis and apoptosis; however, the effects were minimal or 179 insignificant in some tissues.

180

181 Metabolomic profiling

182 To understand the metabolic impact of DON toxicity at different levels, liquid 183 chromatography-mass spectrometry was used to characterize the metabolites in the blood, cecum, 184 feces, liver, and urine of growing pigs. PLS-DA indicated that metabolites in the DON and 185 control groups were significantly separated in the cecum, urine, and feces compared to those in 186 the control but not in the blood or liver (Fig. 3A–E). Additional analyses were performed on 187 DON-contaminated pigs to identify biomarkers. Based on VIP values > 1.0 and p < 0.05, the 188 metabolites in tissues including blood, liver, cecum, urine, and feces were as follows. In blood, 189 levels of N-Boc-L-2-aminoadipic acid, phenylalanine, N-retinoylleucine, tetracosaheptaenoic 190 acid, nisinic acid, benzoic acid, ethyl docosahexaenoate, LPC(P-18:0), LPC(16:0) 2M, and 191 LPC(17:0) were significantly altered. The levels of several compounds in the liver were also 192 significantly altered. In the cecum, L-alpha-glycerylphosphorylcholine, creatine, 7H-purin-8-ol, 193 tyrosine, phenylalanine, butyrylcarnitine, tryptophan fragment, glycolic acid, 194 glycoursodeoxycholic acid, 3-hydroxy-5-cholenoylglycine, 7-ketoglycolithocholic acid, 5,6-195 benzoarachidonic acid, ethyl docosahexaenoate, LPC(14:0), LPC(14:1), LPC(15:0), LPC(16:0),

196 LPC(16:0, 17:0, 18:0, and 18:1 were all significantly altered. Urine showed significant changes 197 in 4-aminobenzoic acid, Gly-Pro-Glu, chrysin-7-O-β-D-glucuronide, oroxindin, chrysin-7-O-198 glucuronide, baicalin, and 5-hydroxy-2-(3-methoxystyryl)-1-benzofuran-3-carbaldehyde. In 199 feces, levels of threonic acid, phenylalanine, N-{[1-(L-alanyl)-4-piperidinyl]carbonyl}-L-200 isoleucine, and tert-butyl 2-(2-butoxy ginkgolic acid, tetracosaheptaenoic acid, and 201 tetracosapentaenoic acid were significantly changed. Figure 3G shows changes in purine 202 metabolism, phenylalanine-tyrosine, tryptophan biosynthesis, and phenylalanine metabolism in 203 the DON-treated group. Most candidate metabolites increased at 3 mg/kg (T2) and decreased at 204 higher concentrations (10 mg/kg; T3), but urinary levels only increased at higher concentrations. 205

206 Correlation analysis between final body weight and metabolites

207 A linear regression model was used to analyze the correlation between final BW and blood and 208 tissue metabolites (Fig. 4). Phenylalanine, tyrosine, and creatine levels were significantly correlated with the final BW. Phenylalanine in both cecum ($R^2 = 0.4771$, p = 0.0137) and feces 209 $(R^2 = 0.3266, p = 0.0428)$ metabolites, and tyrosine $(R^2 = 0.3820, p = 0.0322)$ in cecum 210 211 metabolites were negatively correlated with the mean final body weights (Fig. 4A–C). Among the cecal metabolites, creatine ($R^2 = 0.3509$, p = 0.0424) was positively correlated with mean 212 213 final body weight (Fig. 4D). However, correlations with blood biochemical variables did not 214 differ.

215

216 **Discussion**

The U.S. Food and Drug Administration (FDA) has recommended a maximum residue level of DON of <5 mg/kg for grain and grain by-products within 20% of the total swine diet, which is equivalent to 1 mg/kg when converted to complete feed (FDA, 2010). The Canadian Food

220 Inspection Agency (CFIA) also recommends the same standards as the FDA (CFIA, 2024). 221 European Commission's minimum residue level for DON in pig feed of 0.9 mg/kg (European 222 Commission, 2016). China's Feed Safety Standard sets the standard for deoxynivalenol in 223 complete feed for pigs at 1 ppm (Zhao et al., 2021). The Korean Feed Standards and 224 Specifications recommend a deoxynivalenol management level of 0.9 mg/kg in pig feed. Based 225 on these recommendations and regulatory standards from these different countries, the minimum 226 standard for DON treatment was set at 1 mg/kg in this study. Furthermore, we anticipated that 227 DON levels above 1 mg/kg would adversely affect the health of growing pigs and thus focused 228 on evaluating the effects of graded levels of DON. Although Wu et al. (2015) found that a DON 229 concentration of 3 mg/kg had no significant effects on the health of growing pigs, Wellington et 230 al. (2021) reported serious effects at the same concentration. Therefore, 3 mg/kg was used as the 231 intermediate level to clarify the effects of DON toxicity in growing pigs. Additionally, to assess 232 the effect of high levels of DON toxicity during the growth period, the maximum treatment was 233 set at 10 mg/kg (Jeong et al., 2024). Thus, the effects of graded levels of DON (1, 3, and 10 234 mg/kg feed) on the growth performance, blood biochemistry, histology, and metabolite levels 235 were examined in growing pigs over a 4-week period.

236 DON adversely affects the growth performance of pigs (Wu et al., 2015; Reddy et al., 2018). 237 The main symptoms of DON toxicity include vomiting, diarrhea, and anorexia (Pinton et al., 238 2009; Pestka et al., 2017), possibly resulting in intestinal damage, reducing overall nutrient 239 absorption and utilization, which leads to decreased growth performance (Ghareeb et al., 2015). 240 In this study, high levels of DON (10 mg/kg) significantly decreased growth performance, with 241 an 11.6% decrease in final BW compared with the control group. However, our results did not 242 show any effect of DON toxicity on ADFI or FCR. Similar to our results, Reddy et al. (2018) 243 reported that the final BW of growing pigs fed 8 mg/kg DON decreased by 17% compared with 244 that of the control group, whereas DON supplementation had no significant effect on the ADFI of 245 growing pigs compared with the control group. Sayyari et al. (2018) also administered high doses 246 of 5 mg/kg DON during the growth phase, but neither ADFI nor FCR showed significant 247 differences compared to the control group. In contrast, Wu et al. (2015) reported that ADFI in 248 growing pigs fed a high level of DON (12 mg/kg) was reduced by 41.6% compared with the 249 control group. Although approximately 85% of weight loss due to mycotoxicosis is attributed to 250 reduced feed intake, various factors, such as the contamination level, pig health status, and 251 feeding period, can also have an effect (Pastorelli et al., 2012; Weaver et al., 2013). Therefore, 252 further research that considers internal and external factors is required to determine the exact 253 causes of weight loss.

254 In the present study, ALKP and LIPA levels were affected by high DON levels. We observed 255 increased serum ALKP levels in growing pigs in the high-level DON treatment groups, which is 256 consistent with the findings of Wu et al. (2015), who administered 12 mg/kg DON to 60-88-d-257 old pigs. Serum ALKP is secreted by mucosal cells lining the biliary tract of the liver and can 258 leak into the blood when the liver cells are damaged (Wu et al., 2013; Ji et al., 2023). Therefore, 259 the increase in serum ALKP levels in the high DON treatment groups may indicate liver damage 260 owing to DON-induced systemic toxicity, which may be explained by the abnormal excretion of 261 hepatic metabolites (Chaytor et al., 2011). Our results also showed reduced blood LIPA levels in 262 growing pigs fed 3 mg/kg DON. LIPA is a hydrolytic enzyme secreted by the pancreas that 263 breaks down fatty acids, and its activity is an important indicator of intestinal digestive function 264 (Long et al., 2021; Qin et al., 2023). To date, no study has reported a direct relationship between deoxynivalenol and blood lipid levels in growing pigs. However, DON intake damages the 265 266 intestinal mucosa and increases intestinal permeability, reducing intestinal absorption and 267 impairing digestive organ function (Pierron et al., 2016). This may result in the suppression of

268	digestive enzyme secretion. Additionally, abnormalities in the biliary tract tissue may impair bile
269	flow from hepatocytes during cholestasis, leading to the accumulation of bile acids in the liver,
270	which may cause abnormal secretion of ALKP (Tannergen et al., 2006; Reyer et al., 2019). In all
271	mammals, the hepatopancreatic biliary system consists of branching ducts linking the liver and
272	pancreas to the duodenum (Zhang et al., 2023). Thus, abnormalities in these biliary tracts can
273	cause pancreatitis and inhibit the secretion of digestive enzymes, including LIPA, from the
274	pancreas (Tsomidis et al., 2008; Yin et al., 2023). Consequently, our results suggest that DON
275	negatively affects the digestive processes of growing pigs, which may explain the decline in
276	growth performance observed in the DON treatment group.
277	The liver is the primary organ affected by DON exposure, as it is crucial in detoxifying and
278	metabolizing mycotoxins following the ingestion of DON-contaminated feed (Hasuda et al.,
279	2022). Mycotoxins and their metabolites are primarily absorbed in the small intestine, with 51%
280	of ingested DON absorbed in the small intestine (Lewczuk et al., 2016). Additionally, DON may
281	be more susceptible to break down by microorganisms in the large intestine of pigs than by those
282	residing in the initial segments of the intestine (Kollarczik et al., 1994; Lewczuk et al., 2016). In
283	the present study, histological alterations, including fibrosis and apoptosis, were observed in liver
284	and intestinal tissues in a dose-dependent manner. Our previous studies and several others have
285	also observed fibrosis and apoptosis in porcine liver and intestinal tissues due to DON toxicity
286	(Skeiepko et al., 2020; Jeong et al., 2024). Histological liver and small intestine damage may
287	explain the abnormal secretion of ALKP and LIPA from the blood in this study. These changes
288	may be closely related to DON-induced oxidative stress. Several studies have shown that DON
289	induces oxidative stress by increasing the accumulation of reactive oxygen species (ROS),
290	impairing the function of key antioxidant enzymes such as superoxide dismutase (SOD), GSH-Px
291	and catalase (CAT), and increasing the levels of malondialdehyde (MDA) and 8-OHdG, a marker

292	of oxidative damage (Ji et al., 2023; Xu et al., 2020). Ji et al. (2023) found that increased levels of
293	ROS, MDA and 8-OHdG were strongly correlated with an increase in the number of apoptotic
294	cells in pig liver, demonstrating that hepatocyte apoptosis is induced by DON-mediated oxidative
295	damage. Furthermore, DON-induced oxidative stress increased the expression of apoptosis-
296	related genes and proteins, such as interleukin-1 beta (IL-1 β), cyclooxgenase-2 (COX-2),
297	interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF- α), caspase-3, caspase-8 and caspase-9 in
298	porcine intestinal epithelial cells (IPEC-J2 cells) (Kang et al., 2019). DON-induced oxidative
299	stress can lead to fibrosis (Lan et al., 2015). Fibrosis refers to the excessive accumulation of
300	fibrous connective tissue in the extracellular matrix (ECM) of a damaged tissue (Antar et al.,
301	2023). Oxidative stress boosts fibrotic factors like TGF- β 1, leading to fibrosis by amassing
302	extracellular matter (Yao et al., 2021; Antar et al., 2023). In addition, oxidative stress can trigger
303	the release of inflammatory cytokines such as TNF- α , monocyte chemoattractant protein (MCP-
304	1), IL-6 and IL-8, which can lead to tissue fibrosis (Ranneh et al., 2017; Yao et al., 2021; Antar et
305	al., 2023). Our results show the risk of increased DON concentrations in pig diets due to tissue
306	damage. However, as this study did not analyse DON-induced oxidative stress, future research
307	investigating histological changes and DON-induced oxidative stress will be necessary.
308	Metabolomic analysis was conducted to explore the biological processes related to DON
309	toxicity. Metabolites are the final products or intermediates of cellular activities and represent the
310	overall response of organs or biological systems to various pathophysiological conditions
311	(Wishart, 2019). Therefore, our results show the changes in pathways linked to DON toxicity.
312	Metabolites from different tissues showed distinct profiles, indicating differences in metabolic
313	profiles between the control and DON groups. These results are similar to those of our previous
314	study that evaluated DON toxicity in weaned piglets (Jeong et al., 2024). Additionally, the
315	correlation between the metabolites that contributed to the separation among treatment groups

316 and final body weight was analyzed to identify metabolic biomarkers associated with growth in 317 pigs exposed to DON toxicity. In the present study, increases in phenylalanine and tyrosine 318 contributed to weight loss in growing pigs, whereas increases in creatine were associated with 319 weight gain in growing pigs. Phenylalanine is an essential amino acid that is a substrate for 320 protein synthesis and other biochemical pathways (Xian et al., 2018). Phenylalanine suppresses 321 food intake by inducing the secretion of satiety hormones (Alamshah et al., 2017). Tyrosine is the 322 main metabolite of phenylalanine and is converted into other compounds, including dopamine, 323 serotonin, and epinephrine. These are involved in biological processes such as stress response, 324 appetite control, and behavioral regulation (Jeong et al., 2024). Creatine is endogenously 325 synthesized from glycine, arginine, and methionine, primarily in the kidneys and pancreas 326 (Wallimann et al., 2011; McBreairty et al., 2015). It is crucial in energy metabolism by providing 327 the adenosine triphosphate required for cellular functions (Li et al., 2018). Additionally, creatine 328 transporter mRNA expression is associated with the regulation of food intake, suggesting that 329 creatine is closely related to feed intake and body weight gain (Li et al., 2018). Therefore, this 330 suggests the possibility that creatine supplementation may improve growth performance in pigs 331 impaired by DON toxicity. Indeed, several studies have shown that creatine monohydrate 332 supplementation improves growth performance in pigs by stimulating muscle energy metabolism 333 and increasing protein synthesis (Young et al., 2007; Li et al., 2018). However, few studies have 334 directly linked DON toxicity to creatine supplementation. Therefore, further studies are needed to 335 elucidate the effect of creatine supplementation on DON toxicity. Consequently, our findings 336 suggest that DON toxicity affects the imbalance of various metabolic pathways in the body of 337 growing pigs, which affected the weight loss of growing pigs in the high DON group. In this 338 study, phenylalanine, tyrosine, and creatine synthesis were considered as potential biomarkers of 339 DON toxicity affecting growth performance.

340 In conclusion, we demonstrated that there are no significant health effects at low DON levels 341 for growing pigs, whereas high DON levels decreased growth performance and altered blood 342 biochemical characteristics. Furthermore, our results showed that DON toxicity caused 343 significant dose-related histological changes, including fibrosis and apoptosis, in specific organs 344 of growing pigs. Additionally, DON toxicity induced metabolic changes in growing pigs, which 345 were linked to their final body weights. Therefore, our findings suggest that DON levels above 346 the maximum residue limits cause adverse health effects in growing pigs, with these effects 347 intensifying as DON levels increase. However, because DON toxicity can manifest differently in 348 chronic versus acute exposure, we will conduct future studies to clarify its effects throughout the 349 lifespan of pigs (Pestka & Smolinski, 2005). In addition, a substantial proportion of feed is 350 contaminated with multiple mycotoxins. DON toxicity may be exacerbated by interactions with 351 other mycotoxins—such as zearalenone, fumonisin, and aflatoxin B1—that are frequently 352 detected in animal feeds (Holanda & Kim, 2021; Lei et al., 2013; Weaver et al., 2013). In this 353 context, several studies have reported that mitigation strategies, including inorganic compounds, 354 adsorption, antioxidants, yeast, and bacteria, can help alleviate the toxic effects of these 355 mycotoxins (Zhu et al., 2016; Holanda & Kim, 2021). In particular, biological detoxifiers such as 356 probiotics and yeast are considered a promising approach to reduce toxic effects without 357 compromising the nutritional value of feed, compared to physical and chemical methods 358 (Recharla et al., 2022). Therefore, we will conduct further research to elucidate how DON 359 interacts with other major mycotoxins commonly found in feed, while additional investigations 360 are also needed to develop the most effective biological detoxifiers for application in 361 conventional farming systems. Although further research is needed, this study can be used as a 362 basis for toxicity studies and as a criterion for DON-contaminated diets for growing pigs.

364	Referen	nces
365	1.	Abdallah MF, Girgin G, Baydar T. 2015. Occurrence, prevention, and limitation of
366		mycotoxins in feeds. Anim Nutr Feed Technol 15:471–490.
367	2.	Alamshah A, Spreckley E, Norton M, Kinsey-Jones JS, Amin A, Ramgulam A, Murphy
368		KG. 2017. L-phenylalanine modulates gut hormone release and glucose tolerance, and
369		suppresses food intake through the calcium-sensing receptor in rodents. Int J Obes
370		41(11):1693–1701.
371	3.	Antar SA, Ashour NA, Marawan ME, Al-Karmalawy AA. 2023. Fibrosis: types, effects,
372		markers, mechanisms for disease progression, and its relation with oxidative stress,
373		immunity, and inflammation. Int J Mol Sci 24:4004.
374	4.	Chaytor AC, See MT, Hansen JA, De Souza ALP, Middleton TF, Kim SW. 2011. Effects
375		of chronic exposure of diets with reduced concentrations of aflatoxin and deoxynivalenol
376		on growth and immune status of pigs. J Anim Sci 89(1):124–135.
377	5.	Chen J, Zhang X, He Z, Xiong D, Long M. 2024. Damage on intestinal barrier function
378		and microbial detoxification of deoxynivalenol: a review. J Integr Agric 23(8):2507–2524.
379	6.	Dänicke S, Goyarts T, Döll S, Grove N, Spolders M, Flachowsky G. 2006. Effects of the
380		Fusarium toxin deoxynivalenol on tissue protein synthesis in pigs. Toxicol Lett 165:297-
381		311.
382	7.	Devreese M, Croubels S. 2020. Comparative toxicokinetics of Fusarium mycotoxins in
383		pigs and humans. Food Chem Toxicol 137:111140.
384	8.	European Commission. 2016. Commission Recommendation (EU) 2016/1319 of 29 July
385		2016 amending Recommendation 2006/576/EC as regards deoxynivalenol, zearalenone

386		and ochratoxin A in pet food. Off J Eur Union 208:58-60.
387	9.	European Food Safety Authority. 2013. Deoxynivalenol in food and feed: occurrence and
388		exposure. EFSA J 11:3379.
389	10.	Food and Drug Administration. 2018. Guidance for industry and FDA: Advisory Levels
390		for Deoxynivalenol (DON) in Finished Wheat Products for Human Consumption and
391		Grains and Grain By-Products used for Animal Feed.
392	11.	Ghareeb K, Awad WA, Böhm J, Zebeli Q. 2015. Impacts of the feed contaminant
393		deoxynivalenol on the intestine of monogastric animals: poultry and swine. J Appl
394		Toxicol 35(4):327–337.
395	12.	Government of Canada, Canadian Food Inspection Agency. 2024. RG-8 Regulatory
396		Guidance: Contaminants in Feed (formerly RG-1, Chapter 7).
397	13.	Gruber-Dorninger C, Jenkins T, Schatzmayr G. 2019. Global mycotoxin occurrence in
398		feed: A ten-year survey. Toxins (Basel) 11:375.
399	14.	Hasuda AL, Person E, Khoshal AK, Bruel S, Puel S, Oswald IP, Pinton P. 2022.
400		Deoxynivalenol induces apoptosis and inflammation in the liver: Analysis using
401		precision-cut liver slices. Food Chem Toxicol 163:112930.
402	15.	Holanda DM, Kim SW. 2020. Efficacy of mycotoxin detoxifiers on health and growth of
403		newly-weaned pigs under chronic dietary challenge of deoxynivalenol. Toxins 12:311.
404	16.	Holanda DM, Kim SW. 2021. Mycotoxin occurrence, toxicity, and detoxifying agents in
405		pig production with an emphasis on deoxynivalenol. Toxins 13:171.
406	17.	Jeong JY, Kim J, Kim M, Shim SH, Park C, Jung S, Jung H. 2024. Effects of increasing

407		oral deoxynivalenol gavage on growth performance, blood biochemistry, metabolism,
408		histology, and microbiome in rats. Biology 13(10):836.
409	18.	Jeong JY, Kim J, Kim M, Park S. 2024. Efficacy of high-dose synbiotic additives for
410		deoxynivalenol detoxification: Effects on blood biochemistry, histology, and intestinal
411		microbiome in weaned piglets. Biology. 13(11):889.
412	19.	Ji X, Tang Z, Zhang F, Zhou F, Wu Y, Wu D. 2023. Dietary taurine supplementation
413		counteracts deoxynivalenol-induced liver injury via alleviating oxidative stress,
414		mitochondrial dysfunction, apoptosis, and inflammation in piglets. Ecotoxicol Environ
415		Saf 253:114705.
416	20.	Jia B, Lin H, Yu S, Liu N, Yu D, Wu A. 2023. Mycotoxin deoxynivalenol-induced
417		intestinal flora disorders, dysfunction and organ damage in broilers and pigs. J Hazard
418		Mater 451:131172.
419	21.	Kang R, Li R, Dai P, Li Z, Li Y, Li C. 2019. Deoxynivalenol induced apoptosis and
420		inflammation of IPEC-J2 cells by promoting ROS production. Environ Pollut 251:689-
421		698.
422	22.	Kang TH, Kang KS, Lee SI. 2022. Deoxynivalenol induces apoptosis via FOXO3a-
423		signaling pathway in small-intestinal cells in pig. Toxics 10(9):535.
424	23.	Kollarczik B, Gareis M, Hanelt M. 1994. In vitro transformation of the Fusarium
425		mycotoxins deoxynivalenol and zearalenone by the normal gut microflora of pigs. Nat
426		Toxins 2(3):105–110.
427	24.	Kwon WB, Shin SY, Song YS, Kong C, Kim BG. 2023. Effects of mycotoxin-
428		sequestering agents on growth performance and nutrient utilization of growing pigs fed

429		deoxynivalenol-contaminated diets. Life 13(10):1953.
430	25.	Lan T, Kisseleva T, Brenner DA. 2015. Deficiency of NOX1 or NOX4 prevents liver
431		inflammation and fibrosis in mice through inhibition of hepatic stellate cell activation.
432		PLoS One 10.
433	26.	Lei M, Zhang N, Qi D. 2013. In vitro investigation of individual and combined cytotoxic
434		effects of aflatoxin B1 and other selected mycotoxins on the cell line porcine kidney 15.
435		Experimental and Toxicologic Pathology 65(7–8):1149–1157.
436	27.	Lewczuk B, Przybylska-Gornowicz B, Gajęcka M, Targońska K, Ziółkowska N, Prusik
437		M, Gajęcki M. 2016. Histological structure of duodenum in gilts receiving low doses of
438		zearalenone and deoxynivalenol in feed. Exp Toxicol Pathol 68(2–3):157–166.
439	28.	Li JL, Guo ZY, Li YJ, Zhang L, Gao F, Zhou GH. 2015. Effect of creatine monohydrate
440		supplementation on carcass traits, meat quality and postmortem energy metabolism of
441		finishing pigs. Anim Prod Sci 56(1):48–54.
442	29.	Long S, Liu S, Wang J, Mahfuz S, Piao X. 2021. Natural capsicum extract replacing
443		chlortetracycline enhances performance via improving digestive enzyme activities,
444		antioxidant capacity, anti-inflammatory function, and gut health in weaned pigs. Anim
445		Nutr 7(2):305–314.
446	30.	López-Vergé S, Gasa J, Temple D, Bonet J, Coma J, Solà-Oriol D. 2018. Strategies to
447		improve the growth and homogeneity of growing-finishing pigs: feeder space and feeding
448		management. Porcine Health Manag 4:1–9.
449	31.	McBreairty LE, Robinson JL, Furlong KR, Brunton JA, Bertolo RF. 2015.
450		Guanidinoacetate is more effective than creatine at enhancing tissue creatine stores while

451		consequently limiting methionine availability in Yucatan miniature pigs. PLoS One 10(6).
452	32.	Pastorelli H, van Milgen J, Lovatto P, Montagne L. 2012. Meta-analysis of feed intake
453		and growth responses of growing pigs after a sanitary challenge. Animal 6(6):952–961.
454	33.	Pestka JJ, Clark ES, Schwartz-Zimmermann HE, Berthiller F. 2017. Sex is a determinant
455		for deoxynivalenol metabolism and elimination in the mouse. Toxins 9(8):240.
456	34.	Pestka JJ, Smolinski AT. 2005. Deoxynivalenol: toxicology and potential effects on
457		humans. J Toxicol Environ Health B Crit Rev 8:39–69.
458	35.	Pierron A, Alassane-Kpembi I, Oswald IP. 2016. Impact of two mycotoxins
459		deoxynivalenol and fumonisin on pig intestinal health. Porcine Health Manag 2:1–8.
460	36.	Pinton P, Nougayrède JP, Del Rio JC, Moreno C, Marin DE, Ferrier L, Oswald IP. 2009.
461		The food contaminant deoxynivalenol decreases intestinal barrier permeability and
462		reduces claudin expression. Toxicol Appl Pharmacol 237(1):41-48.
463	37.	Qin S, Peng Y, She F, Zhang J, Li L, Chen F. 2023. Positive effects of selenized-
464		oligochitosan on zearalenone-induced intestinal dysfunction in piglets. Front Vet Sci
465		10:1184969.
466	38.	Ranneh Y, Ali F, Akim AM, Hamid HA, Khazaai H, Fadel A. 2017. Crosstalk between
467		reactive oxygen species and pro-inflammatory markers in developing various chronic
468		diseases: a review. Appl Biol Chem 60:327–338.
469	39.	Recharla N, Park S, Kim M, Kim B, Jeong JY. 2022. Protective effects of biological feed
470		additives on gut microbiota and the health of pigs exposed to deoxynivalenol: a review.
471		Journal of Animal Science and Technology 64(4):640.

472	40.	Reddy KE, Song J, Lee HJ, Kim M, Kim DW, Jung HJ, Lee SD. 2018. Effects of high
473		levels of deoxynivalenol and zearalenone on growth performance, and hematological and
474		immunological parameters in pigs. Toxins 10(3):114.
475	41.	Reyer H, Oster M, Wittenburg D, Murani E, Ponsuksili S, Wimmers K. 2019. Genetic
476		contribution to variation in blood calcium, phosphorus, and alkaline phosphatase activity
477		in pigs. Front Genet 10:590.
478	42.	Saenz JS, Kurz A, Ruczizka U, Bünger M, Dippel M, Nagl V, Grenier B, Ladinig A,
479		Seifert J, Selberherr E. 2021. Metaproteomics reveals alteration of the gut microbiome in
480		weaned piglets due to the ingestion of the mycotoxins deoxynivalenol and zearalenone.
481		Toxins 13:583.
482	43.	Sayyari A, Fæste CK, Hansen U, Uhlig S, Framstad T, Schatzmayr D, Sivertsen T. 2018.
483		Effects and biotransformation of the mycotoxin deoxynivalenol in growing pigs fed with
484		naturally contaminated pelleted grains with and without the addition of
485		Coriobacteriaceum DSM 11798. Food Addit Contam Part A 35(7):1394–1409.
486	44.	Serviento AM, Brossard L, Renaudeau D. 2018. An acute challenge with a
487		deoxynivalenol-contaminated diet has short- and long-term effects on performance and
488		feeding behavior in finishing pigs. J Anim Sci 96(12):5209–5221.
489	45.	Skiepko N, Przybylska-Gornowicz B, Gajęcka M, Gajęcki M, Lewczuk B. 2020. Effects
490		of deoxynivalenol and zearalenone on the histology and ultrastructure of pig liver. Toxins
491		12(7):463.
492	46.	Sun Y, Jiang J, Mu P, Lin R, Wen J, Deng Y. 2022. Toxicokinetics and metabolism of
493		deoxynivalenol in animals and humans. Arch Toxicol 96(10):2639–2654.

494	47.	Tannergren C, Evilevitch L, Pierzynowski S, Piedra JV, Weström B, Erlwanger K,
495		Lennernäs H. 2006. The effect of pancreatic and biliary depletion on the in vivo
496		pharmacokinetics of digoxin in pigs. Eur J Pharm Sci 29(3–4):198–204.
497	48.	Tsomidis I, Voumvouraki A, Kouroumalis E. 2024. The pathogenesis of pancreatitis and
498		the role of autophagy. Gastroenterol Insights 15(2):303-341.
499	49.	Venglovecz V, Rakonczay Z, Ozsvari B, Takacs T, Lonovics J, Varro A, Hegyi P. 2008.
500		Effects of bile acids on pancreatic ductal bicarbonate secretion in guinea pig. Gut
501		57(8):1102–1112.
502	50.	Wallimann T, Tokarska-Schlattner M, Schlattner U. 2011. The creatine kinase system and
503		pleiotropic effects of creatine. Amino Acids 40:1271-1296.
504	51.	Wang XC, Zhang YF, Cao L, Zhu L, Huang YY, Chen XF, Chu XY, Zhu DF, Ur Rahman
505		S, Feng SB, et al. 2019. Deoxynivalenol induces intestinal damage and inflammatory
506		response through the nuclear factor-kB signaling pathway in piglets. Toxins 11:663.
507	52.	Weaver AC, See MT, Hansen JA, Kim YB, De Souza AL, Middleton TF, Kim SW. 2013.
508		The use of feed additives to reduce the effects of aflatoxin and deoxynivalenol on pig
509		growth, organ health and immune status during chronic exposure. Toxins 5(7):1261–1281.
510	53.	Wellington MO, Bosompem MA, Petracek R, Nagl V, Columbus DA. 2020. Effect of
511		long-term feeding of graded levels of deoxynivalenol (DON) on growth performance,
512		nutrient utilization, and organ health in finishing pigs and DON content in biological
513		samples. J Anim Sci 98(12).
514	54.	Wellington MO, Bosompem MA, Rodrigues LA, Columbus DA. 2021. Effect of long-
515		term feeding of graded levels of deoxynivalenol on performance, nutrient utilization, and

516		organ health of grower-finisher pigs (35 to 120 kg). J Anim Sci 99(6)
517	55.	Wishart DS. 2019. Metabolomics for investigating physiological and pathophysiological
518		processes. Physiol Rev 99(4):1819–1875.
519	56.	Wu L, Liao P, He L, Ren W, Yin J, Duan J, Li T. 2015. Growth performance, serum
520		biochemical profile, jejunal morphology, and the expression of nutrients transporter genes
521		in deoxynivalenol (DON)-challenged growing pigs. BMC Vet Res 11:1-10.
522	57.	Wu L, Wang W, Yao K, Zhou T, Yin J, Li T, Yin Y. 2013. Effects of dietary arginine and
523		glutamine on alleviating the impairment induced by deoxynivalenol stress and immune
524		relevant cytokines in growing pigs. PLoS One 8(7).
525	58.	Xian Y, Zhao X, Wang C, Kang C, Ding L, Zhu W, Hang S. 2018. Phenylalanine and
526		tryptophan stimulate gastrin and somatostatin secretion and H+-K+-ATPase activity in
527		pigs through calcium-sensing receptor. Gen Comp Endocrinol 267:1–8.
528	59.	Xu X, Yan G, Chang J, Wang P, Yin Q, Liu C, Lu F. 2020. Astilbin ameliorates
529		deoxynivalenol-induced oxidative stress and apoptosis in intestinal porcine epithelial
530		cells (IPEC-J2). J Appl Toxicol 40(10):1362–1372.
531	60.	Yao Y, Zhao X, Zheng S, Wang S, Liu H, Xu S. 2021. Subacute cadmium exposure
532		promotes M1 macrophage polarization through oxidative stress-evoked inflammatory
533		response and induces porcine adrenal fibrosis. Toxicology 461:152899.
534	61.	Yin J, Cui T, Yang Y, Ren TL. 2023. Sensing of digestive enzymes-diagnosis and
535		monitoring of pancreatitis. Chemosensors 11(9):469.
536	62.	Young JF, Bertram HC, Theil PK, Petersen AG, Poulsen KA, Rasmussen M, Oksbjerg N.

537		2007. In vitro and in vivo studies of creatine monohydrate supplementation to Duroc and
538		Landrace pigs. Meat Science 76(2):342-351.
539	63.	Zhang W, Wang X, Lanzoni G, Wauthier E, Simpson S, Ezzell JA, Reid LM. 2023. A
540		postnatal network of co-hepato/pancreatic stem/progenitors in the biliary trees of pigs and
541		humans. NPJ Regen Med 8(1):40.
542	64.	Zhao L, Li X, Ji C, Rong X, Liu S, Zhang J, Ma Q. 2016. Protective effect of Devosia sp.
543		ANSB714 on growth performance, serum chemistry, immunity function, and residues in
544		kidneys of mice exposed to deoxynivalenol. Food Chem Toxicol 92:143–149.
545	65.	Zhao L, Zhang L, Xu Z, Liu X, Chen L, Dai J, Sun L. 2021. Occurrence of Aflatoxin B
546		1, deoxynivalenol and zearalenone in feeds in China during 2018-2020. Journal of
547		Animal Science and Biotechnology, 12, 1-12.
548	66.	Zhu Y, Hassan YI, Watts C, Zhou T. 2016. Innovative technologies for the mitigation of
549		mycotoxins in animal feed and ingredients-A review of recent patents. Animal Feed
550		Science and Technology 216:19-29.
551		

	Ingredients	 Percentage (%)				
	Corn	57.30				
	Soybean meal	25.00				
	Wheat bran	11.50				
	Molasses	1.40				
	Soybean oil	2.00				
	Limestone	1.00				
	L-Lysine	0.40				
	Salt	0.40				
	Sweet whey	0.50				
	Tricalcium phosphate	0.50				
	Total	100				
553						
554						

^	T 11 1	0	• • • •	· .1	1	1	•	•
552	Table I	Compos	ition ot	the conve	ntional	diets in	orowing	nios
552	Lable L.	Compos	nuon oi		muonui	ulous III	SIOWING	PIS ^D

555 **Table 2.** Effects of increasing deoxynivalenol intake on growth performance in growing pigs for

556 4 weeks¹

Parameters ²	CTL (n=3)	T1 (n=3)	T2 (n=3)	T3 (n=3)	SEM	p-value
Initial BW, kg	34.8	34.5	34.4	34.4	0.53	0.995
Final BW, kg	52.5 ^a	49.3 ^{ab}	50.0 ^{ab}	46.4 ^b	0.84	0.045
ADFI, kg	1.30	1.30	1.33	1.27	0.04	0.974
ADG, kg	0.63	0.53	0.53	0.46	0.03	0.259
FCR	2.06	2.51	2.41	3.17	0.20	0.271

¹CTL, control (basal diet); T1, basal diet + DON 1 mg/kg feed; T2, basal diet + DON 3 mg/kg

558 feed; T3, basal diet + DON 10 mg/kg feed

²BW, body weight; ADG, average daily gain; ADFI, average daily feed intake; FCR, feed

560 conversion ratio

a, b Different superscript letters indicate that the variables within a row are significantly different (p < 0.05).

50-	Table 5. Dioeneninear effects of mereasing deoxymvalenor intake in growing pigs for 4 weeks							
	Parameters	CTL (n=3)	T1 (n=3)	T2 (n=3)	T3 (n=3)	SEM	p-value	
	Alkaline phosphatase, U/L	150.0 ^b	201.3 ^a	175.7 ^{ab}	221.3 ^a	7.94	0.003	
	Lipase, U/L	25.7 ^a	25.2 ^a	10.5 ^b	11.3 ^b	1.27	0.007	
F (F	1 OTT (1(1 11')) TT1	1 1 1 4	DON 1	/I C 1	TO 1 11	(DON	2 /1	

Table 3. Biochemical effects of increasing deoxynivalenol intake in growing pigs for 4 weeks¹

 1 CTL, control (basal diet); T1, basal diet + DON 1 mg/kg feed; T2, basal diet + DON 3 mg/kg

566 feed; T3, basal diet + DON 10 mg/kg feed

 $^{a, b}$ Different superscript letters indicate that the variables within a row are significantly different (p < 0.05).

Fig. 1. Effects of increasing deoxynivalenol (DON) intake on histological analysis in growing
pigs. Images of the liver, muscle, duodenum, ileum, rectum, jejunum, cecum, and colon
(ascending, transverse, descending) of growing pigs treated with different concentrations of DON
were obtained after 28 d of the experiment using Masson's trichrome staining (blue). Signs of
fibrosis increased as DON concentrations increased in the liver, muscle, ileum, and duodenal

- 577 tissues. Control, basal diet; T1, basal diet + DON 1 mg/kg feed; T2, basal diet + DON 3 mg/kg
- 578 feed; T3, basal diet + DON 10 mg/kg feed. The arrows indicate fibrosis. Observations were
- 579 performed at $200 \times$ magnification.
- 580

581

Fig. 2. Effects of increasing deoxynivalenol (DON) intake on apoptosis in growing pigs. Images
at 200 × and 400 × magnification of the liver and ileum from growing pigs treated with
increasing concentrations of DON were obtained after 28 d using terminal deoxynucleotidyl
transferase dUTP nick-end labeling (TUNEL) staining. In both organs, TUNEL-positive staining
increased with elevated DON concentrations. Control, basal diet; T1, basal diet + DON 1 mg/kg
feed; T2, basal diet + DON 3 mg/kg feed; T3, basal diet + DON 10 mg/kg feed. The arrows
indicate apoptosis.

С

596

D

597

598

Е

610 confidence interval. Metabolites from the control and DON treatment groups showed distinct 611 cluster separation in the cecum, urine, and feces but not in the blood and liver. The heatmap 612 shows the significantly different data visualization of multiple parameters for the potential 613 indicators of VIPs (VIPs > 1, p < 0.05). In the PLS-DA and biplots, the colored and white circles 614 represent the metabolites identified in the DON-contaminated piglet tissue groups. CTL, control 615 (basal diet); T1, basal diet + DON 1 mg/kg feed; T2, basal diet + DON 3 mg/kg feed; T3, basal 616 diet + DON 10 mg/kg feed.

Fig. 4. Simple linear regression analysis showing the association between final body weight and
metabolic parameters. Phenylalanine (A) and tyrosine (B) in cecum metabolites and
phenylalanine (C) in feces metabolites were negatively correlated with final body weight. (D)
Creatine in cecum metabolites was positively correlated with final body weight. The correlation
coefficient and p-value were calculated using GraphPad Prism software. BW, body weight.