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Abstract  This research was motivated by our encounter with the situation where an 
optimization was done based on statistically non-significant models having poor fits. Such 
a situation took place in a research to optimize manufacturing conditions for improving 
storage stability of coffee-supplemented milk beverage by using response surface 
methodology, where two responses are Y1=particle size and Y2=zeta-potential, two factors 
are F1=speed of primary homogenization (rpm) and F2=concentration of emulsifier (%), 
and the optimization objective is to simultaneously minimize Y1 and maximize Y2. For 
response surface analysis, practically, the second-order polynomial model is almost solely 
used. But, there exists the cases in which the second-order model fails to provide a good 
fit, to which remedies are seldom known to researchers. Thus, as an alternative to a failed 
second-order model, we present the heterogeneous third-order model, which can be used 
when the experimental plan is a two-factor central composite design having -1, 0, and 1 as 
the coded levels of factors. And, for multi-response optimization, we suggest a modified 
desirability function technique. Using these two methods, we have obtained statistical 
models with improved fits and multi-response optimization results with the predictions 
better than those in the previous research. Our predicted optimum combination of 
conditions is (F1, F2)=(5,000, 0.295), which is different from the previous combination. 
This research is expected to help improve the quality of response surface analysis in 
experimental sciences including food science of animal resources. 
  
Keywords  response surface methodology, central composite design, heterogeneous third-
order model, multi-response optimization, desirability 

Introduction 

Response surface methodology (RSM) is a set of statistical techniques for modeling 

and optimizing responses through the design and analysis of experiments (Myers et al., 

2009), which has been widely used in engineering, agriculture, life science,  
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microbiology and food sciences. A search by Google Scholar revealed that the number of scientific articles whose titles 

mentioned ‘response surface’ was 157 in 2000 but it became 1,860 in 2018, which is an 11.8-fold increase during recent 18 

years. This indicates that RSM has been established as an important tool for modeling and optimization in experimental 

sciences including food sciences of animal resources. 

In RSM, the central composite designs (CCD, Box and Wilson, 1951) have been most frequently used as experimental 

plans, and the second-order polynomial regression models have been usually employed for data analysis. And, the response 

surface model can be said to be well fitted and reliable when it satisfies the following criteria: (1) the model is significant (the 

model p-value≦0.05), (2) the lack of fit is non-significant (the lack-of-fit p-value>0.05), (3) the r2≧0.9 (Giunta, 1997), and 

(4) the adjusted r2≧0.8 (Myers et al., 2009).  

However, in reality, it is observed that, for some data, the analysis models, which are the second-order models in most 

cases, do not satisfy the above criteria. A remedy in this case is to use a third-order model that consists of linear, quadratic, 

cubic, and relevant interaction terms (Rheem and Rheem, 2012). For example, when there are two factors, letting X1 and X2 

denote coded factors, the third-order model has the following terms: linear terms X1 and X2, quadratic terms X1
2 and X2

2, 

cubic terms X1
3 and X2

3, and the two-factor interaction term X1X2. There exist the cases where this method improves the 

model. But, this method is applicable to a CCD that uses five values, which are denoted by –α, –1, 0, 1, and α, as the levels of 

coded factors. 

When the experimental design is a CCD in which –1, 0, and 1 are the levels of coded factors, as in Table 1, cubic terms 

cannot be added to the model, since (–1)3=–1, (0)3=0, and (1)3=1, which makes the cubic terms equal to the linear terms. For 

example, in Table 1B, we can see that X1=X1
3 and X2=X2

3, and thus the X1
3 and X2

3 terms cannot be chosen from among the 

candidates of additional model terms for augmenting the second-order model. 

This problem can be solved by adding the terms of the interaction between the linear term of one factor and the quadratic 

term of another factor. For example, in Table 1B, X1
2X2 and X1X2

2 are such interaction terms. The model that contains such 

interaction terms can be named a heterogeneous third-order model, since the sum of the exponents in each of such interaction 

terms is three. Thus, a remedy in this case is to augment the second-order model to the heterogeneous third-order model by 

adding the X1
2X2 and X1X2

2 terms, which are chosen from among the candidates of additional model terms in Table 1B, to the 

second-order model.  

A dataset, which is obtained through the screening of the data in Ahn et al. (2017), will be re-analyzed for the illustration of 

the remedy suggested in this research note. Since Ahn et al. (2017) has two responses and a purpose of it is the multi-response 

optimization of them, this research note, which is a continuation of Rheem and Oh (2019), will model both responses by 

using heterogeneous third-order models, and optimize them simultaneously by employing the desirability function technique.  

 

Materials and Methods 

Dataset to be re-analyzed 
Data analysis should include data screening, which is necessary for accurate modeling. The original data to be used for re-

analysis is the data described in Ahn et al. (2017), in which they tried to optimize manufacturing conditions for improving 

storage stability of coffee-supplemented milk beverage by using RSM. Through data screening, one outlier was deleted from 

their data (Rheem and Oh, 2019). The response variables, Y1 and Y2, and the factors in this experiment are described in Table 

1A. The dataset from which an outlier is eliminated is given in Table 1B. Here, the experimental design is a CCD for two  
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factors with the coded levels of –1, 0, and 1. Using this data, we will fit to the data second-order models and heterogeneous 

third-order models. 

 

Statistical analysis 
Data were analyzed by the use of SAS software. SAS/STAT (2013) was employed for the statistical modeling of data. 

Graphs were produced by SAS/GRAPH (2013). 
 

Results and Discussion 

Fitting the second-order model to the data 
First, for each of Y1 and Y2, the second-order polynomial regression model containing 2 linear, 2 quadratic, and 1 

interaction terms was fitted to the data by using RSREG procedure of SAS/STAT. 

For both Y1 and Y2, the second-order models are unsatisfactory. For Y1, the model is non-significant (p=0.5962), the lack 

of fit is significant (p=0.0131), the r2=0.40<0.9, and the adjusted r2=–0.11<0.8. Also, for Y2, the model is non-significant 

(p=0.2924), the lack of fit is significant (p=0.0203), and the r2=0.57<0.9, and the adjusted r2=0.21<0.8. None of the four 

criteria are met for both Y1 and Y2. Thus, we will augment the analysis models for their improvement. 

Table 1. Response variables, actual and coded factors, experimental design, and response data

A. Response variables, actual and coded factors, and the levels of the factors 

Response variables Actual factors Coded factors
Actual factor level corresponding to 

the coded factor level of 

–1 0 1 

Y1=Particle size F1=Speed of primary homogenization (rpm) X1 5,000 10,000 15,000 

Y2=Zeta-potential F2=Concentration of emulsifier (%) X2 0.1 0.2 0.3 
 
B. Experimental design and response data with candidates of additional model terms 

Experimental design in coded levels and response data Candidates of additional model terms for augmenting the 
2nd-order model 

Standard 
order 

Design 
point X1 X2 Y1 Y2 X13 X23 X12X2 X1X22 

1 1 –1 –1 179.900 27.5000 –1 –1 –1 –1 

2 2 –1  1 178.267 29.9667 –1  1  1 –1 

3 3  1 –1 179.533 24.3000  1 –1 –1  1 

4 4  1  1 219.767 32.5666  1  1  1  1 

5 5 –1  0 217.867 36.1000 –1  0  0  0 

6 6  1  0 178.367 28.2667  1  0  0  0 

7 7  0 –1 185.333 29.1000  0  –1  0  0 

8 8  0  1 182.167 28.2000  0  1  0  0 

9 9  0  0 186.433 30.8300  0  0  0  0 

10 9  0  0 181.933 29.0667  0  0  0  0 

11 9  0  0 175.633 29.6000  0  0  0  0 

12 9  0  0 180.333 29.1000  0  0  0  0 
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Fitting the heterogeneous third-order model to the data 
For each of Y1 and Y2, since the second-order model has a poor fit for the data, next we will fit to the data a heterogeneous 

third-order model that consists of the X1, X2, X1
2, X2

2, X1X2, X1
2X2, and X1X2

2 terms, by adding the X1
2X2 and X1X2

2 terms 

to the second-order model, in the anticipation of a possible improvement in modeling. 

For both Y1 and Y2, the heterogeneous third-order models are satisfactory. For Y1, the model is significant (p=0.0243), the 

lack of fit is non-significant (p=0.1276), the r2=0.94>0.9, and the adjusted r2=0.84≧0.8. Also, for Y2, the model is significant 

(p=0.0371), the lack of fit is non-significant (p=0.0820), and the r2=0.93>0.9, and the adjusted r2=0.80≧0.8. All of the four 

criteria are satisfied for both Y1 and Y2. 

Thus, we accept these models as our final models. Letting Y1 and Y2 denote the predicted values of Y1, and Y2, we specify 

our heterogeneous third-order models as 
   Yଵ = b + bଵXଵ + bଶXଶ + bଵଵXଵଶ + bଶଶXଶଶ + bଵଶXଵXଶ + bଵଵଶXଵଶXଶ + bଵଶଶXଵXଶଶ 
 

and 
   Yଶ = c + cଵXଵ + cଶXଶ + cଵଵXଵଶ + cଶଶXଶଶ + cଵଶXଵXଶ + cଵଵଶXଵଶXଶ + cଵଶଶXଵXଶଶ 
 

where the coefficients b1, b2, …, b122 and c1, c2, …, c122 are given in Table 2A and Table 2B. 
 

Drawing the 3D plots of the response surface 
Each of the three-dimensional (3D) response surface plots was drawn with the vertical axis representing the predicted 

response and two horizontal axes indicating the two explanatory factors. Fig. 1A and 1B are the 3D response surface plots for 

the effects of the two actual factors on the two predicted responses. 

 

Multi-response optimization of two responses 
In Ahn et al. (2017), the optimization objective was to minimize Y1 (particle size) and maximize Y2 (zeta-potential) 

simultaneously. For this multi-response optimization, we modified the desirability function technique of Derringer and Suich 

(1980). In this modified technique, first, we define the desirability function for the minimization of Y1 as 

   Dଵ = [Maximum(Yଵ) − Yଵ]/[Maximum(Yଵ) − Minimum(Yଵ)], 
 

and define the desirability function for the maximization of Y1 as 
   Dଶ = [Yଶ − Minimum(Yଶ)]/[Maximum(Yଶ) − Minimum(Yଶ)]. 
 

Here, for Y1, when Y1 is minimized, D1 becomes 1; otherwise 0≦D1<1, and for Y2, when Y2 is maximized, D2 becomes 1; 

otherwise 0≦D2<1. Now, we define CD, which means the composite desirability, as 
   CD = (DଵDଶ)(ଵ/ଶ) 
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which is the geometric mean of D1 and D2. Then, we find the combination of the values of X1 and X2 that maximizes CD. This 

combination is the optimum point of (X1, X2). Now, by converting this optimum point to the combination of the levels of the 

actual factors, we achieve the multi-response optimization of minimizing Y1 and maximizing Y2 simultaneously. 

For the minimization and maximization of Y1 and Y2 and the maximization of CD, we performed the searches on a grid 

(Oh et al., 1995). First, we obtained Minimum (Y1)=170.8131135, Maximum (Y1)=221.6698750, Minimum (Y2)=24.7334750, 

and Maximum (Y2)=35.2957228, and using these values, we implemented our modified desirability function technique that 

maximizes the composite desirability defined above. Fig. 1C shows the 3D surface plot of the composite desirability function 

for our multi-response optimization. Table 2C presents the results of our multi-response optimization. 

In Ahn et al. (2017), at their optimum point, their Y1 value was 190.1 and their Y2 value was –25.94±0.06, whereas, at our 

predicted optimum point, the predicted Y1 was 183.4 and the predicted Y2 was 30.93. We can see that our predicted minimum of 

Y1 is smaller than their observed Y1, and our predicted maximum of Y2 is greater than their observed Y2. Their optimum 

conditions for their multi-response optimization were F1=speed of primary homogenization (rpm)=5,000 and F2=concentration 

of emulsifier (%)=0.2071, whereas our optimum conditions are F1=5,000 and F2=0.295. We can see that our predicted 

combination of optimum factor levels is different from theirs. A validation experiment will be needed to verify the result of 

multi-response optimization obtained by the method proposed in this article.  

Table 2. Results of modeling and optimization 

A. Coefficient estimates in the heterogeneous 3rd–order model on Y1 

Term Parameter estimate Standard error t-value p-value 
Intercept b0=182.99 2.76 66.24 <0.0001 
X1 b1=–19.75 4.28 –4.62 0.0099 
X2 b2=–1.58 4.28 –0.37 0.7302 
X12 b11=–11.33 3.71 3.06 0.0378 
X22 b22=–3.04 3.71 –0.82 0.4579 
X1X2 b12=10.47 3.03 3.46 0.0258 
X12X2 b112=11.23 5.24 2.14 0.0987 
X1X22 b122=30.03 5.24 5.73 0.0046 

 
B. Coefficient estimates in the heterogeneous 3rd-order model on Y2 

Term Parameter estimate Standard error t-value p-value 
Intercept c0=30.08 0.58 51.52 <0.0001 
X1 c1=–3.92 0.90 –4.33 0.0124 
X2 c2=–0.45 0.90 –0.50 0.6450 
X12 c11=1.23 0.78 1.57 0.1904 
X22 c22=–2.30 0.78 –2.94 0.0426 
X1X2 c12=1.45 0.64 2.27 0.0860 
X12X2 c112=3.13 1.11 2.83 0.0474 
X1X22 c122=3.77 1.11 3.40 0.0273 

 

C. Results of multi-response optimization 

X1 X2 F1=Speed of primary 
homogenization (rpm)

F2=Concentration 
of emulsifier (%)

Predicted minimum 
of Y1=Particle size

Predicted maximum 
of Y2=Zeta-potential D1 D2 CD= 

Composite desirability

–1 0.95 5,000 0.295 183.4 30.93 0.752 0.587 0.664 
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Conclusion 

This article suggests the use of the heterogeneous third-order model for better modeling and a modified desirability function 

technique for multi-response optimization. The heterogeneous third-order model can be used when (1) the experimental 

design is a two-factor central composite design having –1, 0, and 1 as the coded levels of factors, and (2) a second-order 

model fails to provide a good fit for the data. How to construct the heterogeneous third-order model is to use X1, X2, X1
2, X2

2, 

X1X2, X1
2X2, and X1X2

2 as model terms. A modified desirability function technique first defines a desirability function for 

each response according to each optimization objective, and then finds out the combination of factor levels that maximizes 

the geometric mean of the values from desirability functions for multiple responses. An illustrative new analysis of the data 

from a previous research has produced statistical models with better fits and optimization results with better predictions. This 

suggestion is expected to help enhance the quality of response surface analyses of the experiments in food science of animal 

resources. 

 

(A)                                                    (B) 

  

(C) 

 

Fig. 1. 3D surface plots of predicted responses and the composite desirability function. (A) 3D surface plot of the predicted response Y1, (B) 

3D surface plot of the predicted response Y2, (C) 3D surface plot of the composite desirability function. 
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