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Abstract  In this study, ovalbumin (OVA) hydrolysates were prepared using various 
proteolytic enzymes and the anti-inflammatory activities of the hydrolysates were 
determined. Also, the potential application of OVA as a functional food material was 
discussed. The effect of OVA hydrolysates on the inhibition of nitric oxide (NO) 
production was evaluated via the Griess reaction, and their effects on the expression of 
inducible NO synthase (inducible nitric oxide synthase, iNOS) were assessed using the 
quantitative real-time PCR and Western blotting. To determine the mechanism by which 
OVA hydrolysates activate macrophages, pathways associated with the mitogen-activated 
protein kinase (MAPK) signaling were evaluated. When the OVA hydrolysates were 
added to RAW 264.7 cells without lipopolysaccharide (LPS) stimulation, they did not 
affect the production of NO. However, both the OVA-Protex 6L hydrolysate (OHPT) and 
OVA-trypsin hydrolysate (OHT) inhibited NO production dose-dependently in LPS- 
stimulated RAW 264.7 cells. Especially, OHT showed a strong NO-inhibitory activity 
(62.35% at 2 mg/mL) and suppressed iNOS production and the mRNA expression for 
iNOS (p<0.05). Also, OHT treatment decreased the phosphorylation levels of Jun amino-
terminal kinases (JNK) and extracellular signal-regulated kinases (ERK) in the MAPK 
signaling pathway. These findings suggested that OVA hydrolysates could be used as an 
anti-inflammatory agent that prevent the overproduction of NO. 
  
Keywords  ovalbumin, egg white protein, nitric oxide, anti-inflammatory activity, MAPK 
pathway 

Introduction 

Inflammation is an immune response that can be activated by various conditions and 

stimuli which involve the injury of tissue or infection (Medzhitov, 2008). Immune cells 

and inflammatory mediators are known to be involved in the inflammatory process. 

Nitric oxide (NO) is one of the inflammatory mediators that play a variety of roles in 

physiological and pathological immune responses (Chang et al., 2019). NO is  
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synthesized by the nitric oxide synthase (NOS) family, which consisting neuronal NOS (nNOS), endothelial NOS (eNOS), 

and inducible NOS (iNOS). Under normal conditions, nNOS and eNOS produce the required amount of NO that regulates 

cell proliferation and survival, while iNOS produces large amounts of NO to enhance immunity (Lundberg et al., 1997). 

However, the overproduction of NO has been associated with the progression of many diseases, including chronic 

inflammation, Alzheimer’s disease, diabetes mellitus, and cancer (Dali-Youcef et al., 2013; Sharma et al., 2007). Therefore, 

new compounds that inhibit the overproduction of NO are considered candidates for the production of novel anti-

inflammatory agents. 

Macrophages play a vital role in immune reactions, and the functions of macrophages that include phagocytosis, antigen 

presentation, and NO and inflammatory cytokine production (Lee et al., 2017b). Macrophages produce pro-inflammatory 

factors via several cell signaling pathways, including nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) 

pathways when they are activated by lipopolysaccharides (LPS), which are one of the main sources of stimulation for 

macrophages (Ham et al., 2015; Li et al., 2017). The MAPK pathways have three different main families, which are Jun 

amino-terminal kinases (JNK) pathway, extracellular signal-regulated kinases (ERK) pathway, and p38 pathway (Ham et al., 

2015). This has made the MAPK pathways the primary targets for the development of novel anti-inflammatory agents and 

has placed them at the center of this field of research (Seo et al., 2015). 

Many peptides produced from various protein sources, such as soy (de Mejia and Dia, 2009), fish (Ahn et al., 2015) and 

lupine (Millán-Linares et al., 2014), are known to have anti-inflammatory properties. These peptides inhibit the production of 

pro-inflammatory cytokines and NO in immune cells after stimulation. de Mejia and Dia (2009) reported that peptides 

derived from soy proteins suppressed the NF-κB pathway and inhibited the production of inflammatory cytokines in LPS 

stimulated RAW 264.7 macrophages. Some egg proteins were also used to prepare anti-inflammatory peptides: Ovotransferrin 

peptides (IRW) inhibited the production of several cell adhesion molecules associated with the onset and progression of 

inflammation in human endothelial cells (Huang et al., 2010). Sun et al. (2016) reported that ovomucin peptides have anti-

inflammatory activities by suppressing the NF-κB pathway. Ovalbumin (OVA) has important functional properties that make 

it useful for gelling, foaming, and emulsifying of food products. Many studies have shown that the hydrolysates or peptides 

from OVA possess various bioactivities, including antioxidants (Abeyrathne et al., 2014), antihypertensive (Matoba et al., 

1999), and antimutagenic effects (Vis et al., 1998). However, few studies have assessed the anti-inflammatory activity of 

OVA hydrolysates in relation to their inhibitory effects on the production of NO in immune cells.  

The objectives of present study were to determine the effect of OVA hydrolysates on the production of NO and the 

expression of iNOS mRNA, and elucidate the anti-inflammatory mechanism of OVA hydrolysates in LPS-stimulated RAW 

264.7 cells. 

 

Materials and Methods 

Materials and reagents 
OVA was isolated from egg white using the method of Abeyrathne et al. (2013). Briefly, egg white was diluted with an 

equal volume of distilled water, homogenized for 1 min using a hand-blender (Kitchen-Aid) at high speed (set at 9) and used. 

Lysozyme, ovomucin, and ovotransferrin were sequentially removed from the diluted egg white using the method developed 

by Abeyrathne et al. (2014). Lysozyme was removed first from the egg white solution: Amberlite FPC 3500 resin (5 g/100 

mL diluted egg white) was added to the diluted egg white solution and stirred overnight in a 4℃ walk-in cooler using an 
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overhead stirrer set at 250 rpm (RW20 digital, IKA Works, Wilmington, NC, USA) to trap lysozyme. After filtering out the 

resins, the pH of the lysozyme-free egg white solution was adjusted to 4.75 using 3 N HCl to precipitate ovomucin. The 

precipitated ovomucin was removed by centrifugation at 3,500×g for 30 min at 4℃ (Sorvall Evolution RC superspeed 

centrifuge, Thermo Scientific, Waltham, MA, USA), and then the lysozyme- and ovomucin-free egg white was added with 

ammonium sulfate (5.0%, wt/vol) and citric acid (2.5%, wt/vol) and held for 12 h at 4℃ to precipitate ovotransferrin, which 

was removed by centrifugation at 3,500×g for 30 min. The resulting supernatant, which was mainly composed of OVA and 

ovomucoid, was added with 100% ethanol to the final concentration of 35%, and then centrifuged. After removing the 

residual ovomucoid using 4 volumes of 35% of ethanol, the resulting precipitant was washed with 4 volumes of distilled 

water twice, the pH adjusted to pH 12.0 to dissolve OVA, and then brought the pH down to 10.0 using 1N HCl. Finally, the 

dissolved OVA was heated at 70℃ for 15 min to precipitate impurities, centrifuged, and then lyophilized using a freeze-dryer 

(Labconco, Kansas City, MO, USA). The purity and yield of the isolated OVA was 97% and 97.7%. 

Fetal bovine serum (FBS), Dulbecco’s modified Eagle’s medium (DMEM), penicillin-streptomycin, and phosphate-

buffered saline (PBS) were purchased from Hyclone Laboratories, Inc. (Logan, MI, USA). N-(1-naphthyl)-ethylenediamine, 

sulfanilamide, thiazolyl blue tetrazolium bromide (MTT), LPS, and bovine serum albumin (BSA) were purchased from 

Sigma-Aldrich (St. Louis, MO, USA). For PCR analysis, RNeasy Mini Kit for total RNA isolation was purchased from 

Qiagen (Milan, Italy), RevertAid™ First Strand cDNA Synthesis Kit was purchased from Thermo Fisher Scientific (Carlsbad, 

CA, USA), and SYBR reagent was purchased from PhileKorea (Daejeon, Korea). For Western blotting analysis, cell lysis 

buffer, inhibitor cocktail containing protease and phosphatase inhibitor, and a Protein Assay Kit were purchased from Thermo 

Fisher Scientific. Primary antibodies for total or phosphorous from MAPKs (p38, JNK, and ERK), iNOS, and β-actin were 

obtained from Santa Cruz Biotechnology (Dallas, TX, USA). A secondary antibody (Goat anti-mouse IgG-HRP) and other 

reagents for western blotting were purchased from Bio-Rad (Hercules, CA, USA). All other chemicals used were of analytical 

reagent grade. 
 

Preparation of OVA hydrolysates 
Because the functional activity of peptides varies depending on their amino acid sequence, length, and structural 

characteristics (Hartmann and Meisel, 2007), four different proteolytic enzymes were used in this study. OVA (10 mg/mL) 

were hydrolyzed using one of the following proteases: Trypsin (from bovine pancreas, EC 3.4.21.5. Sigma-Aldrich), Promod 

278P (endopeptidase, EC 3.4.24.28, BISION, Sungnam, Korea), Multifect PR 14L (thermophilic-bacterial protease from 

Geobacillus stearothermophilus, EC 3.4.24.27, BISION), and Protex 6L (alkaline protease from Bacillus licheniformis, EC 

3.4.21.65, BISION). Enzymes were added at 1:50 (enzyme: substrate) ratio, and then the mixture was incubated for 4 h under 

optimal conditions: Trypsin (pH 8.0, 40℃), Promod 278P (pH 6.5, 45℃), Multifect PR 14L (pH 8.0, 70℃), and Portex 6L 

(pH 7.0, 60℃). To inactivate the enzymes, the mixture was heated for 10 min at 100℃, and then centrifuged at 2,000×g for 

20 min. The supernatant was lyophilized using a freeze-dryer. The OVA hydrolysates produced by Trypsin, Promod 278P, 

Multifect PR 14L, and Protex 6L were named as OHT, OHPM, OHMF, OHP, respectively, and the size of OVA hydrolysates 

was determined using sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) (15% gel).  

 

Cell lines and culture conditions 
The RAW 264.7 cell line, which is a murine macrophage, was purchased from the KCLB (Korean Cell Line Bank, Seoul, 

Korea). The medium used for the growth of RAW 264.7 cells was DMEM that contained 1% penicillin-streptomycin and 
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10% FBS (heat-inactivated). RAW 264.7 cells were grown at 37℃ in a humidified 5% CO2 incubator (MCO-18AIC, Sanyo, 

Osaka, Japan) and were sub-cultured at 70%–80% confluence. 

 

Cell viability assay 
The MTT assay (Lee et al., 2017b) was used for determining the effects of OVA and OVA hydrolysates on cell viability of 

RAW 264.7 cells. After measuring NO concentration in the medium, an aliquot of the MTT solution (2.5 mg/mL) was added 

to each well and incubated for an additional 4 h. Supernatants were removed, and dimethyl sulfoxide was added to the wells 

to dissolve the formazan crystals. The absorbance of each well was then measured using a microplate reader (Emax, 

Molecular Devices, Sunnyvale, CA, USA) at 570 nm. Cell viability was calculated using the following equation: 

   Cell viability ሺ%ሻ = ൬ Absorbance of sample Absorbance of control൰ × 100 

 

Measurement of NO production 
RAW 264.7 cells (2×105 cells/well) were plated into a 96-well plate for 2 h, then 2 mg/mL of OVA and OVA hydrolysates 

were treated and incubated for 24 h. NO concentration was measured using the Griess reagent (Kim et al., 2018). One 

hundred μL of supernatant mixed with 100 μL of the Griess reagent and the mixture was incubated for 15 min at room 

temperature. The absorbance at 540 nm was recorded for each well, using a microplate reader. NO concentration was 

calculated using a standard curve made of sodium nitrate. 

 

Inhibition of NO production  
RAW 264.7 cells (2×105 cells/well) were plated into a 96-well plate and various concentrations (0.5, 1, or 2 mg/mL) of 

OVA hydrolysates were treated for 2 h. After that, the plate was further incubated with or without LPS (100 ng/mL) for 24 h. 

NO concentration was then measured and calculated using the Griess reagent as mentioned above. 

 

PCR analysis (RT-PCR and quantitative real-time PCR) 
RAW 264.7 cells (5×105 cells/well) were plated into a 6-well plate and various concentrations (0.5, 1, or 2 mg/mL) of OVA 

hydrolysates were added and incubated for 24 h. At the end of incubation, the samples in the plate were treated with LPS (0 

or 100 ng/mL) and then incubated for 24 h. Total RNA was isolated using the RNA isolation kit according to the 

manufacturers' instructions and synthesized to cDNA using a synthesis kit. Synthesized cDNA was used in PCR analysis as 

template DNA. The primer sequences were shown as follows: iNOS (forward 5´-CCCTTCCGAAGTTTCTGGCAGCAGC-

3´, reverse 5´-GGCTGTCAGAGCCTCGTGGCTTTGG-3´), and β-actin (forward 5´-GTGGGCCGCCCTAGGCACCAG-3´, 

reverse 5´-GGAGGAAGAGGATGCGGCAGT-3´). The RT-PCR reaction was conducted under the following reaction 

conditions: 95℃ for 5 min (initiation), and followed by 25 cycles of 95℃ for 30 s (denaturation), specified temperature of 

each primer for 30 s (annealing), 72℃ for 45 s (extension), and followed by a final extension at 72℃ for 10 min. The final 

products were then evaluated by 1.2% agarose gel electrophoresis with DNA SafeStain (Thermo Fisher Scientific). For 

quantitative real-time PCR analysis, SYBR reagent was used and the reaction was conducted under the following reaction 

conditions: 95℃ for 2 min (initiation) followed by 40 cycles of 95℃ for 5 s (denaturation), 60℃ for 30 s (annealing/ 

extension). The amplified results were analyzed using the delta-delta Ct method and normalized to β-actin. The purity of PCR 
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products was assessed by analyzing the melting curve. 
 

Western blot analysis 
RAW 264.7 cells (2×106 cells/well) were plated into a 6-well plate and OVA hydrolysates were treated and incubated for 

24 h. After that, LPS was added to each well and further incubated for 45 min. RAW 264.7 cells were washed with PBS and 

lysed using the Radioimmunoprecipitation assay (RIPA) lysis and extraction buffer (Thermo Fisher Scientific) with 

protease/phosphatase inhibitor. Total protein concentration was measured by Lowry’s method. And the same concentration 

(25 μg) of proteins were separated by 12% SDS-PAGE gel and transferred to polyvinylidene fluoride membrane (PVDF) 

membranes. After blocking with 5% skim milk or 5% BSA dissolved in TBST (Tris-buffered saline with 1% Tween-20) for 1 

h, membranes incubated with primary antibody iNOS, β-actin, total or phosphorous from of MAPKs (p38, JNK, and ERK) in 

5% skim milk or 5% BSA overnight at 4℃. After washing 3 times with TBST, the membranes were incubated with secondary 

antibody (Goat anti-mouse IgG-HRP) for 2 h at room temperature. After washing, the protein bands were detected using a 

chemiluminescent ECL kit (Thermo Fisher Scientific).  
 

Statistical analysis 
SPSS 18.0 software (Chicago, IL, USA) was used for statistical analysis. Data were expressed as mean±SD. All data were 

taken from three independent experiments. For analysis between two samples, the Student's t-test was used. One-way analysis 

of variance (ANOVA) followed by Duncan’s multiple range test was used for the analysis between multiple samples. The 

significance of differences was reported at the level of p<0.05. 
 

Results and Discussion 

Hydrolysis of OVA 
The OVA standard (lane 1) showed two thick bands near 45 kDa, and our OVA (lane 2) showed a similar band pattern (Fig. 1). 
 

 
Fig. 1. SDS-PAGE of OVA and OVA hydrolysates. M, marker; lane 1, standard OVA (Sigma-Aldrich); lane 2, OVA; lane 3, OHMF 
(hydrolysates treated with Multifect 14L); lane 4, OHPM (hydrolysates treated with Promod 278P); lane 5, OHPT (hydrolysates treated
with Protex 6L); lane 6, OHT (hydrolysates treated with trypsin). SDS-PAGE, sodium dodecyl sulfate–polyacrylamide gel electrophoresis ; 
OVA, ovalbumin. 
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Lanes 3–6 showed the results for the OVA hydrolysates prepared using Multifect 14L hydrolysate (OHMF), Promod 278P 

hydrolysate (OHPM), Protex 6L hydrolysate (OHPT), and trypsin (OHT), respectively. Although the same amounts of 

samples were loaded on lanes 3–6 (1 mg/mL), the density of the band observed around 45 kDa in Lane 4 was lighter than that 

of other lanes, indicating that Promod 278P hydrolyzed OVA better than other enzymes used. Also, lanes 3–6 showed 

different band patterns: lanes 5 and 6 showed more peptide bands than lanes 3 and 4 in the areas where the molecular weights 

were <25 kDa. This means that the four proteolytic enzymes produced different kinds of peptides from the OVA. Also, this is 

why each OVA hydrolysate exhibited different activities. Lee and Paik (2019) reported that the biological activity of protein 

hydrolysates and peptides were closely related to their amino acid sequence, length, and composition. Some researchers 

purified and identified some of the main peptides to determine their functional activity, but many others examined the 

functional activity of protein hydrolysates or mixtures of various peptides (Bhaskar et al., 2019; Lee et al., 2017a; Millán-

Linares et al., 2014). In this study, we have investigated the anti-inflammatory activity of OVA hydrolysates, instead of 

individual peptides in the hydrolysates, in LPS-stimulated RAW 264.7 cells. 

 

Cell viability and NO production by OVA and OVA hydrolysates 
The effects of OVA and OVA hydrolysates on cell viability were evaluated using MTT assay to confirm that the changes of 

NO production by the LPS-stimulated RAW 264.7 cells were not the result of cytotoxicity of the hydrolysates. As shown in 

Fig. 2, the viability of the RAW 264.7 cells in all groups was above 90%, indicating that all concentrations (0.5–2 mg/mL) of 

OVA and OVA hydrolysates were not toxic to the RAW 264.7 cells. Thus, we could confirm that the changes of NO 

production in RAW 264.7 cells by the OVA and OVA hydrolysate treatments were not the result of cytotoxicity. 

OVA has been widely used as an antigen in experimental animal models (including as an inhalant) and dietary allergy study 

(Mine and Yang, 2008). Some studies reported that OVA increased iNOS and COX-2 expression by activating NF-κB 

pathways in RAW 264.7 cells (Lee et al., 2011). However, this allergenicity could be decreased by heat, pH, and enzymatic 

hydrolysis because these parameters could alter protein structure (Ballmer-Weber et al., 2016; Duan et al., 2014).  

Thus, to confirm the inflammatory response to OVA (allergenicity) and its hydrolysates, RAW 264.7 cells were treated 

with OVA and OVA hydrolysates and the amount of NO produced was determined. As shown in Fig. 3, LPS (100 ng/mL) 

treatment increased the NO production level to 27.61±1.96 µM and addition of OVA to the LPS-stimulated RAW  

 

 

Fig. 2. Cell viability of RAW 264.7 cells treated with OVA and OVA hydrolysates. : 0.5 mg/mL, : 1 mg/mL, : 2 mg/mL. All values are 
represented as mean±SD of triplicate experiments. OVA, ovalbumin; OHMF, hydrolysates treated with Multifect 14L; OHPM, hydrolysates 
treated with Promod 278P; OHPT, hydrolysates treated with Protex 6L; OHT, hydrolysates treated with trypsin. 



Food Science of Animal Resources  Vol. 40, No. 2, 2020 

280 

 

264.7 cells increased the NO production level to 19.48±1.40 µM. However, the addition of OVA hydrolysate to the LPS-

stimulated RAW 264.7 cells produced less than 1 µM of NO (OHMF, OHPM, OHPT, and OHT showed 0.20±0.08, 

0.17±0.08, 0.22±0.07, and 0.13±0.13 µM, respectively), which were similar to the amount produced in the cells added with 

distilled water (negative control; 0.55±0.26 µM), indicating that OVA hydrolysates did not affect NO production. 
 

Inhibitory effects of OVA hydrolysates on NO production 
As shown in Fig. 4, the positive control (LPS, 100 ng/mL) showed high production of NO (28.39 ±1.63 μM). OVA 
 

 

Fig. 3. Nitric oxide production in RAW 264.7 cells. All values represent the mean±SD of triplicate experiments. *** Represents a 
statistically significant difference of p<0.001 (Student’s t-test) compared with the negative control. (–): distilled water, (+): LPS 100 ng/mL, 
All extracts were used at a concentration of 2 mg/mL. OVA, ovalbumin; OHMF, hydrolysates treated with Multifect 14L; OHPM,
hydrolysates treated with Promod 278P; OHPT, hydrolysates treated with Protex 6L; OHT, hydrolysates treated with trypsin; LPS, 
lipopolysaccharide. 

 

Fig. 4. Inhibitory effects of OVA hydrolysates on nitric oxide production in LPS-stimulated RAW 264.7 cells. : 0.5 mg/mL, : 1 mg/mL, 
: 2 mg/mL. All values represent the mean±SD of triplicate experiments. Bars labeled with different letters represent statistically 

significant differences. (–): distilled water, (+): LPS 100 ng/mL, OVA, ovalbumin; OHMF, hydrolysates treated with Multifect 14L; OHPM,
hydrolysates treated with Promod 278P; OHPT, hydrolysates treated with Protex 6L; OHT, hydrolysates treated with trypsin; LPS, 
lipopolysaccharide. 
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hydrolysates showed significant inhibitory effects on NO production. At a concentration of 2 mg/mL, OHMF inhibited NO 

production by 24.24±1.35 μM. The OHPT and OHT treatments showed dose-dependent inhibitions of NO production at 0.5, 

1, or 2 mg/mL (OHPT: 25.17±1.46, 21.15±1.35, and 17.01±0.84 μM, OHT: 23.28±1.35, 19.46±1.07, and 13.99±2.22 μM, 

respectively). 

Under normal conditions, NO performs an important function in the inflammatory response (Kumar et al., 2017). When 

inflammation is induced, an appreciable level of NO is secreted by immune-activated macrophages at the site of 

inflammation. However, the overproduction of NO causes various complications as a result of chronic inflammation (Cho et 

al., 2011). Therefore, the inhibitory effect of OVA hydrolysates on NO production in LPS-stimulated RAW 264.7 cells is a 

relevant measure to releave the inflammatory activity (Kim and Kim, 2019). Several studies have suggested that the peptides 

in the hydrolysates prepared using proteolytic enzymes exerted anti-inflammatory activity by inhibiting NO production in the 

LPS-stimulated RAW 264.7 cells (Kim et al., 2013; Lai et al., 2011). As shown in the results, OHT showed the highest 

inhibitory effect on NO production in the LPS-stimulated RAW 264.7 cells. Therefore, OHT was selected for further analysis. 
 

Effect of OHT on gene and protein expression of iNOS 
To understand the inhibition mechanism of NO production by OTH, the amount of iNOS and the expression of iNOS 

mRNA were evaluated using Western blotting and PCR analysis, respectively. 

The inducible NO synthase is strongly linked to the regulation of NO production during the inflammatory responses. 

Hence, many researchers have tried to find new substances that can inhibit its enzyme production (Shanura Fernando et al., 

2018). As shown in Fig. 5A, the production of iNOS was significantly decreased dose-dependently by OHT. The expression 

of iNOS mRNA (Fig. 5B) also significantly decreased when treated with OHT (p<0.05). These decreases, 23.34±3.56, 

43.79±2.59, and 63.87±1.47% at 0.1, 0.5, and 2 mg/mL of OHT, respectively, also showed dose-dependence. The expression 

of iNOS was not affected when the RAW 264.7 cells were treated with OHT only. 

After stimulation, macrophages produced increased amount of iNOS, indicating that the pro-inflammatory response is 

directly related to the production of NO. The overexpression of iNOS enzyme produces excessive amount of NO and leads to 

the pathogenesis of various inflammatory diseases, septic shock, and cancer (Lai et al., 2011). Many studies reported that 

natural compounds including carbohydrates, protein, and flavonoids have anti-inflammatory activity by suppressing iNOS 

expression, resulting in the inhibition of NO production (Ham et al., 2015; Shanura Fernando et al., 2018; Sun et al., 2016). 

Thus, our results suggested that OHT inhibited NO production by inhibiting iNOS expression.  

 

Effect of OHT on phosphorylation of the MAPK pathway 
The Western blotting was performed to confirm whether the MAPK pathway is involved in the anti-inflammatory activity of 

OHT in LPS-stimulated RAW 264.7 cells. The JNK, ERK, and p38 pathway are part of the MAPK pathway whose 

phosphorylation increases their inflammatory activity. As shown in Fig. 6, the phosphorylation of JNK, ERK, and p38 in RAW 

264.7 cells increased after the cells were treated with LPS (45 min). However, when RAW 264.7 cells were co-treated with 

LPS and OHT (2 mg/mL), OHT inhibited the phosphorylation of JNK and ERK but did not affect the phosphorylation of p38. 

The MAPK pathway is known to regulate several cellular responses (e.g., cell survival, proliferation, and apoptosis) 

following exposure to various stimuli such as stress, shock, and pro-inflammatory cytokines (Pearson et al., 2001). Also, 

many studies indicated that the phosphorylation of MAPK was associated with the pro-inflammatory signaling, and up-

regulate the production of IL-6, iNOS, and COX-2 in LPS-stimulated macrophages (Gao et al., 2012; Ham et al., 2015).  
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Fig. 5. Effects of ovalbumin tryptic hydrolysate (OHT) on the expression of iNOS protein (A), and gene transcription (B) in LPS-induced 
RAW 264.7 cells. All values represent the mean±SD of triplicate experiments. Bars labeled with different letters represent significant
differences. iNOS, inducible nitric oxide synthase; LPS, lipopolysaccharide. 

 
Fig. 6. Effects of ovalbumin tryptic hydrolysate (OHT) on phosphorylation of MAPK genes (p38, ERK, and JNK) in LPS-induced RAW 
264.7 cells. LPS, lipopolysaccharide; ERK, extracellular signal-regulated kinases, JNK, Jun amino-terminal kinases. 
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Therefore, effective anti-inflammatory materials should show inhibitory activity on the phosphorylation of MAPK genes. 

Crebanine, isolated from Stephania venosa, inhibits the production of NO, iNOS, COX-2, and PGE2, and also inhibits pro-

inflammatory cytokines including TNF-α and IL-6 by suppressing the MAPK signaling pathways (Intayoung et al., 2016). A 

study with sophocarpine, which is an alkaloid from Sophora alopecuroides L., indicated that sophocarpine attenuated the 

phosphorylation of p38 and JNK, resulted in the inhibition of NO production (Gao et al., 2012), which was similar to our 

results.  

 

Conclusion 

This study demonstrated that OVA hydrolysate treated with trypsin (OHT) showed significant anti-inflammatory activity. 

The OHT inhibited NO production in the LPS-stimulated RAW 264.7 cells by suppressing the production of iNOS and the 

expression of iNOS mRNA. Also, it was confirmed that the anti-inflammatory activity of OHT was through the inhibition of 

JNK and ERK pathways. Therefore, the tryptic hydrolysates of OVA could be used as an anti-inflammatory agent in food 

products. 
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