ARTICLE

Enhanced Production of Galactooligosaccharides Enriched Skim Milk and Applied to Potentially Synbiotic Fermented Milk with Lactobacillus rhamnosus 4B15

Nam Su Oh1https://orcid.org/0000-0002-0712-7843, Kyeongmu Kim2,3https://orcid.org/0000-0002-4487-9366, Sangnam Oh4https://orcid.org/0000-0002-2428-412X, Younghoon Kim5,*https://orcid.org/0000-0001-6769-0657
Author Information & Copyright
1Department of Food and Biotechnology, Korea University, Sejong 30019, Korea
2R&D Center, Seoul Dairy Cooperative, Ansan, Kyunggi 15407, Korea
3Department of Food Bioscience and Technology, Korea University, Seoul 02841, Korea
4Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Korea
5Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
*Corresponding author: Younghoon Kim, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea, Tel: +82-2-880-4808, Fax: +82-2-873-2271, E-mail: ykeys2584@snu.ac.kr

© Korean Society for Food Science of Animal Resources. This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Received: May 16, 2019 ; Revised: Jul 15, 2019 ; Accepted: Jul 18, 2019

Published Online: Oct 31, 2019

Abstract

In the current study, we first investigated a method for directly transforming lactose into galacto-oligosaccharides (GOS) for manufacturing low-lactose and GOS-enriched skim milk (GSM) and then evaluated its prebiotic potential by inoculating five strains of Bifidobacterium spp. In addition, fermented GSM (FGSM) was prepared using a potentially probiotic Lactobacillus strain and its fermentation characteristics and antioxidant capacities were determined. We found that GOS in GSM were metabolized by all five Bifidobacterium strains after incubation and promoted their growth. The levels of antioxidant activities including radical scavenging activities and 3-hydroxy-3-methylglutaryl-CoA reductase inhibition rate in GSM were significantly increased by fermentation with the probiotic Lactobacillus strain. Moreover, thirty-nine featured peptides in FGSM was detected. In particular, six peptides derived from β-casein, two peptides originated from αs1-casein and κ-casein were newly identified, respectively. Our findings indicate that GSM can potentially be used as a prebiotic substrate and FGSM can potentially prevent oxidative stress during the production of synbiotic fermented milk in the food industry.

Keywords: Lactobacillus rhamnosus 4B15; galacto-oligosaccharide; prebiotic

Introduction

A prebiotic is defined as ‘a selectively fermented ingredient that allows specific changes, in the gastrointestinal (GI) microbiota that possess benefits upon host well-being and health’ Gibson and Roberfroid, 1995; Tzortzis et al., 2004). Interest in prebiotics has increased over the past few years. Beneficial prebiotics can modify gut function by targeting bacteria, which are already located in the large intestine. Oligosaccharide prebiotics have been recognized as beneficial dietary adjuncts and play critical role in regulating the colonic microbiota (Fuller and Gibson, 1998; Rabiu et al., 2001). Oligosaccharides are carbohydrates that composed with three to ten sugars connected by glycosidic bonds. Potential oligosaccharide prebiotics can be categorized according to their degree of polymerization and their chemical characteristics, and include isomalto-oligosaccharides, manno-oligosaccharides, pectic-oligosaccharides, xylo-oligosaccharides, fructo-oligosaccharides (FOS), and galacto-oligosaccharides (GOS) (Macfarlane et al., 2006; Macfarlane et al., 2008; Olano-Martin et al., 2003).

GOS are especially applicable to human nutrition as they are structurally similar to a variety of complicity of structures in human breast milk (Intanon et al., 2014; Sangwan et al., 2011). The presence of GOS in human milk supports the establishment of microbiota in the GI tract of newborn, breastfeeding infants (Gopal et al., 2001). GOS are usually synthesized from lactose by β-galactosidases produced by yeast, fungi, or bacteria, and have complex structures which include a variety of glycosidic bonds (Gobinath and Prapulla, 2014; Rabiu et al., 2001). These substrates function as prebiotics by supporting the growth of health-promoting microorganisms such as Bifidobacterium and Lactobacillus (Andersen et al., 2011; Davis et al., 2011; Garrido et al., 2013). Additionally, GOS are resistant to gastric acid and are poor substrates for hydrolytic enzymes in the upper digestive tract. Many in vitro studies have reported that Bifidobacterium and Lactobacillus strains can utilize GOS (Gopal et al., 2001; Smart et al., 1993; Yanahira et al., 1995). Despite interest in the use of GOS as a prebiotic, the mechanisms underlying its utilization by probiotics during fermentation are poorly understood, and our knowledge about the bioactive factors arising from synbiotic interactions between GOS and probiotics is limited. In addition, the potential of milk-derived GOS as a prebiotic substrate has not been sufficiently studied.

Probiotic lactic acid bacterial strains from the GI tract can survive in and colonize the small intestine and have a beneficial impact on host health (Forestier et al., 2000). Lactobacillus rhamnosus 4B15 was reported to have higher bioactive properties such as higher anti-oxidative activity, repression of α-glucosidase activity, cholesterol-reducing activity, and less production of nitric oxide (NO) compared to the other strains (Oh et al., 2018). In addition, 4B15 is known to inhibit the release of inflammatory cytokines including TNF-α, IL-6, IL-1β, and IL-10 and impacts immune health by modulating pro-inflammatory cytokines (Oh et al., 2018).

The aims of our study were optimization of the formation of GOS-enriched skim milk (GSM) during lactose hydrolysis by β-galactosidase, and evaluation of prebiotic effect of GOS after incubation. In addition, we made fermented GSM (FGSM) by selecting a Lactobacillus strain with probiotic potential and then determining its fermentation characteristics and functionality, evaluating cell counts, pH, antioxidant properties, and analyzing organic acids and bioactive peptides. The ultimate purpose of the present research is the development of a novel synbiotic fermented milk.

Materials and Methods

Enzymatic synthesis of GSM

GSM was manufactured through hydrolysis of skim milk (SM) treated with β-galactosidase (Maxilact® LGI 5000, DSM, Netherlands) under the following conditions: 37°C, using 0.1% (w/w) of enzyme. SM was obtained from Seoul Dairy Cooperative (Ansan, Gyeonggi, Korea).

Analysis of GOS

High-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) in an ICS3000 Dionex system consisting of an SP-3000 gradient pump and ED-3000 electrochemical detector were employed for determining carbohydrate composition. Solvent temperature was 25°C on a CarboPac PA-1 analytical column (4×250 mm) connected to a CarboPac PA-1 (4×50 mm) guard column. Solvent A (15 mM NaOH) and solvent B (200 mM NaOH) were mixed to form the following gradient: 100% A from 0 to 15 min, followed by 0%-100% B from 15 to 45 min, kept constant for 2 min and then the column was washed for 10 min with 100% of solvent C (125 mM NaOH and 500 mM NaOAc) and re-equilibrated with the starting conditions.

For carbohydrate extraction, 0.2-gram aliquots of each sample were thoroughly mixed with 20 mL of distilled water and vortexed for 10 min. Carbohydrate extraction was performed twice using the same procedure. The mixture was separated by centrifugation at 5,000×g for 10 min, and the supernatant was filtered with a membrane filter (0.45-μm pore size). Finally, 25- L aliquots were employed using an autosampler system, and separations were carried out at a flow rate of 1 mL/min. Carbohydrates were quantified using standard curves produced from solutions with defined concentrations.

Determination of prebiotic effect

In this study, we selected a probiotic candidate as starter culture from among Bifidobacterium strains isolated from infant feces. After weighing, the feces homogenized in saline, and resuspended. Aliquots of the diluted sample were plated on Bifidobacterium selective (BS) agar (Kisan Bio, Seoul, Korea) and incubated at 37°C for 72 h under anaerobic chamber system. Strains were isolated and then purified using the plate-streak method on BS agar. BS agar is the medium for the selective isolation of bifdobacteria composed of beef extract, liver extract, yeast extract, proteose peptone, tryptone, soy peptone, soluble starch, glucose, dipotassioum phosphate, monopotassium phosphate, magnesium sulfate, sodium chloride, manganese sulfat, L-cysteine, ferrous sulfate, polysolbate 80, sodium propionate, paromomycin sulfate, meomycin, lithium chloride, and agar. The probiotic potentials of isolates were evaluated in terms of acid tolerance, bile tolerance, bacterial attachment, antibacterial activity, and cholesterol-lowering ability (data not shown). From the results, we selected four Bifidobacterium strains (B. infantis 5R08, B. longum 5R10, B. animalis 3B13, B. longum 1R09). A commercial strain, Bifidobacterium animalis subsp. lactis BB-12 (BB12), was employed for the determination of prebiotic effect.

For the determination of prebiotic effect, GSM was incubated with the five selected Bifidobacterium strains 5R08, 5R10, 3B13, 1R09, and BB12 (approximately 107 CFU/mL) at 37°C for 24 h. After 24 h of incubation, GOS contents in FGSM were analyzed using the above-mentioned methods. This study was approved by institutional review board of Samsung Medical Center (IRB No. 2017-08-040).

Preparation of FGSM

GSM and SM were inoculated with 3% suspensions of L. rhamnosus 4B15 (approximately 107 CFU/mL). The mixtures were incubated at 41°C for 24 h. All samples were lyophilized and stored at −80° until analysis.

Determination of viable cell counts and pH in FGSM

In order to determine viable cell counts and pH in FGSM, 4B15 was enumerated on MRS at 37° for 72 h. Changes in FGSM pH were measured after calibration of the pH meter with standardized buffer solutions of pH 4.0, 7.0, and 10.0 (Fisher Scientific).

Determination of antioxidant activity in FGSM

The antioxidant activity of FGSM was performed based on α-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging activity, ferric reducing/antioxidant power activity (FRAP), and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging activity, using the described method by Oh et al. (2013).

Determination of HMGR inhibitory activity in FGSM

The ability of FGSM to inhibit 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) was measured using an HMG-CoA reductase assay kit (Sigma-Aldrich, St. Louis, MO, USA). The HMG-CoA reductase inhibition assay was accessed by previous established procedure by Oh et al. (2014).

Identification of peptides originated from FGSM by MALDI-TOF/MS/MS

Milk peptide extraction by fermentation was conducted using the previous protocol by Oh et al. (2016). For analyzing peptide profiling, peptide extracts were resuspended with an equal volume of matrix solution (HCCA) and 1 μL was loaded onto an MTP SmallAnchor 384 BC target. MALDI-TOF/MS experiments were carried out using a Bruker Autoflex (Bruker Daltonics, Bremen, Germany) equipped with a nitrogen laser (337 nm).

Statistical analysis

All data in this study were indicated as means±SD. Statistical significance of the differences between the groups was confirmed by the methods of Duncan’s multiple range tests, and SAS software (version 9.2; SAS Institute Inc., Cary, NC) was employed to analyze all statistical tests. Differences with p<0.05 were considered significant.

Results

Enzymatic synthesis of GSM

An optimization of the enzymatic synthesis was carried out to obtain the maximum GOS contents, with reaction time as the principal factor examined. To determine the influence of reaction time on GOS production, experiments were performed at 37< with an enzyme concentration of 0.1% (w/w).

Fig. 1 shows the HPAEC-PAD carbohydrate profile obtained when the maximum GOS concentration is reached. The presence of 8 products was identified. Peaks 1, 2, and 5 correspond with galactose (Gal), glucose (Glc), and lactose (Lac), respectively. In addition, three GOS were identified in the chromatogram including 6-galactobiose (peak 3, β-D-Gal-(1→6)-D-Gal), allolactose (peak 4, β-D-Gal-(1→6)-D-Glc), and 6-galactosyllactose (peak 7, D-Galp-(16)-D-Lac) as a result of transgalactosylation catalyzed by the enzyme. 4-galactobiose (peak 6, β-D-Gal-(1→4)-D-Gal) and 3-galactosylglucose (peak 8,β-D-Gal-(1→3)-D-Glc) were also identified. Collectively, our data suggest that the catalyzed transgalactosylation reaction produces GOS with various linkages such as β1→3, β1→4, and β1→6. The GOS produced mainly contained β1→6 linkages.

kosfa-39-5-725-g1
Fig. 1. HPAEC-PAD carbohydrate profile obtained from lactose hydrolysis. The identified compounds are indicated: galactose, glucose, 6-galactobiose, allolactose, lactose, 4-galactobiose, 6-galactosyllactose, and 3-galactosylglucose.HPAEC-PAD, high-performance anion exchange chromatography with pulsed amperometric detection.
Download Original Figure

Fig. 2 and Table 1 show lactose and GOS contents during the time course of reaction, with lactose contents decreasing from 4.35±0.02 to 0.00 g/100 g over a period of 5 h. After 1 h, residual lactose contents had decreased by 98.16%, and maximum GOS yields (16.32%) had been reached. After 1 h of reaction, total GOS content was 0.71±0.01 g/100 g, which amounted to 14.67% of the total carbohydrate content. GOS in GSM was mainly composed of 6-galactosyllactose (0.23±0.00 g/100 g), followed by 6-galactobiose (0.18±0.00 g/100 g) and allolactose (0.17±0.00 g/100 g). Taking time, economic efficiency, GOS content, and lactose content into account, we treated SM with 0.1% (w/w) enzyme for 1 h to produce GSM.

kosfa-39-5-725-g2
Fig. 2. Enzymatic synthesis of GSM. Values are expressed as the mean±SD (n=3). The results are presented as the mean±SD (n=3). Different letters indicate statistically significant differences among the different groups (p<0.05). GSM, GOS-enriched skim milk.
Download Original Figure
Table 1. Carbohydrate profiles of GOS-enriched skim milk (GSM)
Carbohydrate1) (g/100 g) Reaction time
0 h 1 h 2 h 3 h 4 h 5 h
Galactose ND 1.86±0.034c 1.96±0.021a 1.94±0.065ab 1.96±0.008a 1.89±0.028bc
Glucose ND 2.19±0.042a 2.19±0.026a 2.18±0.063ab 2.17±0.009ab 2.12±0.020b
Lactose 4.35±0.016a 0.08±0.001b 0.03±0.0002c 0.03±0.0003c ND ND
6-Galactobiose ND 0.18±0.001a 0.08±0.002b 0.04±0.0003c 0.03±0.001d 0.03±0.001d
Allolactose ND 0.17±0.003a 0.06±0.0004b 0.04±0.001d 0.04±0.004c 0.05±0.002c
4-Galactobiose ND 0.08±0.001a 0.05±0.001b 0.04±0.001c 0.04±0.001d 0.04±0.0005e
6-Galactosyllactose ND 0.23±0.004a 0.11±0.001b 0.05±0.002c 0.04±0.0004d 0.03±0.001d
3-Galactosylglucose ND 0.04±0.001a 0.03±0.0002b 0.03±0.0003c 0.03±0.001d 0.03±0.0004d
Sub-total (GOS) ND 0.71±0.010a 0.34±0.000b 0.20±0.002c 0.19±0.006d 0.18±0.004d
Total carbohydrates 4.35±0.016c 4.84±0.086a 4.52±0.047b 4.35±0.125c 4.32±0.023c 4.20±0.049d

The results are indicated as the mean±SD (n=3).

a-d Different letters represent significant differences among each groups, statistically (p<0.05).

1) Carbohydrate: GOS, galacto-oligosaccharides.

ND, not detected.

Download Excel Table
GOS contents in GSM incubated with Bifidobacterium strains

The GOS content of GSM after 24 h of incubation using the five selected Bifidobacterium strains is presented in Fig. 3. In this study, 6-galactobiose, allolactose, 4-galactobiose, 6-galactosyllactose, and 3-galactosylglucose were measured. After 24 h, the contents of 6-galactobiose in GSM incubated by strains 5R08, 5R10, 3B13, 1R09, and BB12 were 0.18±0.01, 0.17±0.01, 0.17±0.00, 0.18±0.00, and 0.17±0.00 g/100 g, respectively. The amount of 6-galactobiose was decreased by 17.92% (5R10) compared to the initial concentration in GSM, indicating that 6-galactobiose was utilized by Bifidobacterium strains during incubation. The amount of allolactose in GSM incubated by 5R08, 5R10, and 1R09 did not decrease significantly compared to its initial level in GSM. However, allolactose was decreased by 16.64% and 34.17% in GSM incubated by strains 3B13 and BB12, respectively. 4-galactobiose levels also decreased after fermentation, especially in GSM incubated by 5R08, with a 67.77% decrease compared to initial GSM levels. After 24 h, 6-galactosyllactose levels in GSM were similar to its initial level in GSM, with no significant difference except for in the case of 3B13 and BB12. Especially, 6-galactosyllactose contents in GSM incubated by BB12 increased compared to the initial 6-galactosyllactose contents in GSM. Additionally, after 24 h the 3-galactosylglucose contents of GSM incubated by strains 5R08, 5R10, 3B13, 1R09, and BB12 decreased by 22.67%, 3.38%, 52.65%, 13.23%, and 64.95%, respectively. The highest utilization rates of 3-galactosylglucose were found in GSM incubated with BB12. Collectively, the data showed that total GOS content in GSM decreased after 24 h of incubation by all five of the selected Bifidobacterium strains. Strains 3B13 and BB12 utilized the most GOS during incubation. From the results of this study, we confirmed that GOS can be utilized by probiotics, and determined the prebiotic effect of GOS.

kosfa-39-5-725-g3
Fig. 3. (A) Viable cell counts, (B) pH, and (C) individual GOS contents in GSM fermented with Bifidobacterium strains. The results are presented as the mean±SD (n=3). Different letters indicate statistically significant differences among the different groups (p<0.05). GOS, galacto-oligosaccharides. GSM, GOS-enriched skim milk.
Download Original Figure
Viability of probiotic bacteria in FGSM

To determine the fermentation characteristics of GSM, we evaluated growth kinetics and pH during fermentation by the potentially probiotic strain 4B15 (Table 2). As a control, the viable cell counts in fermented SM (FSM) were measured at 8.24±0.02 Log CFU/mL after 24 h of fermentation. The pH of FSM had decreased slightly by the end of fermentation. On the other hand, the viable cell counts in FGSM (9.11±0.01 Log CFU/mL) were higher than that in the FSM. Additionally, the pH of FGSM decreased to 3.85 at the end of fermentation.

Table 2. Viability of probiotic bacteria in fermented GOS-enriched skim milk (FGSM)
Fermentation time SM GSM
0 h 24 h 0 h 24 h
Viable cell counts (Log CFU/mL)
 4B151) 7.52±0.08a 8.24±0.02b 7.60±0.03a 9.11±0.01c
pH
 4B151) 6.61 5.82 6.57 3.85

The results are indicated as the mean±SD (n=3).

a-c Different letters represent significant differences among each groups, statistically (p<0.05).

1) 4B15=Lactobacillus rhamnosus 4B15.

GOS, galacto-oligosaccharides; SM, skim milk; GSM, galacto-oligosaccharides enriched skim milk; FGSM, fermented GSM.

Download Excel Table
Analysis of carbohydrate contents in FGSM

Carbohydrate contents in GSM fermented with 4B15 for 24 h are summarized in Table 3. As shown in Table 3A, after 24 h of fermentation, galactose and glucose contents decreased by 12% and 52% relative to their initial levels in unfermented GSM, respectively. Strain 4B15 utilized the most glucose during fermentation. On the other hand, lactose contents were not significantly different from their initial concentrations. The GOS content of FGSM during fermentation for 24 h using strain 4B15 is shown in Table 3B. The 6-galactobiose contents of FGSM at 0 and 24 h of fermentation with strain 4B15 were 0.22±0.00 and 0.20±0.00 g/100 g, respectively, with 6-galactobiose decreasing by 9.09% during fermentation. Of the allolactose originally in FGSM, 0.24±0.01 g/100 g was utilized, with only 8.33% being metabolized after 24 h of fermentation. With regard to 4-galactobiose and 3-galactosylglucose, there were no significant changes in concentration after 24 h of fermentation. Contents of 6-galactosyllactose decreased by 7.14% compared to unfermented GSM. Lastly, considering the total GOS content of FGSM, only 9.83% of GOS was utilized during fermentation and we confirmed that almost all GOS remained in FGSM.

Table 3. Analysis of carbohydrate contents in fermented GOS-enriched skim milk (FGSM)
Carbohydrate (g/100 g) Reaction time
0 h 24 h
(A)
 Galactose 2.08±0.04d 1.84±0.01c
 Glucose 2.36±0.02e 1.15±0.00b
 Lactose 0.13±0.01a 0.11±0.01a
(B)
 6-Galactobiose 0.22±0.00d 0.20±0.00c
 Allolactose 0.24±0.01e 0.22±0.00d
 4-Galactobiose 0.09±0.00b 0.08±0.00b
 6-Galactosyllactose 0.28±0.00g 0.26±0.00f
 3-Galactosylglucose 0.05±0.00a 0.05±0.00a
 Total carbohydrates 0.61±0.01 0.55±0.01

The results are indicated as the mean±SD (n=3).

a-g Different letters represent significant differences among each groups, statistically (p<0.05).

GOS, galacto-oligosaccharides; FGSM, fermented GSM (GOS-enriched skim milk).

Download Excel Table

Collectively, our data suggest that despite the completion of the fermentation, most of the GOS remained unused in the fermented products. This suggests that both probiotics and residual GOS are present following fermentation, which is beneficial to bioactive functionality.

Antioxidant capacities and HMGR inhibition activity of FGSM

Antioxidant activities were evaluated using DPPH, ABTS, and FRAP bio-assays. Specifically, the DPPH assay measured hydrogen-donating activity, the ABTS assay examined cation-scavenging activity, and the FRAP assay measured the reducing power of ferric ions. The DPPH radical scavenging activities of SM, GSM, FSM, and FGSM are described in Fig. 4A. FGSM had the highest radical scavenging activity (53.17%), followed by FSM (41.00%), SM (14.78%), and GSM (8.69%). To assess another mechanism of antioxidant activity, the ABTS assay was performed (Fig. 4B). FGSM had profound radical scavenging activity (32.36%), followed by FSM (27.49%), SM (13.46%), and GSM (12.03%). After 24 h of fermentation, the ABTS radical scavenging activities of SM and GSM increased by 104% and 169%, respectively, compared to their initial states. The ABTS and DPPH assays showed similar patterns of radical scavenging activities. FSM and FGSM activities were higher than those of SM and GSM, with increases equivalent to 290.08 and 772.58 ̜M FeSO4·7H2O, respectively (Fig. 4C). FGSM showed the highest reducing power, 3.59 times higher than those of GSM. SM, GSM, FSM, and FGSM in their initial states, as determined by HMGR inhibition activity (Fig. 4D). 3-Hydroxy-3-methylglutaryl-CoA reductase is the key factor in the mevalonate pathway, which converts cholesterol from HMG-CoA in the hepatic system (Oh et al., 2013). SM and GSM were significantly different at 0 h, with HMGR inhibition rate of GSM 10 times higher than that of SM. This indicated that the addition of GOS affects HMGR inhibition activities. In addition, FSM and FGSM increased HMGR inhibition rates (by 6.59% and 19.83%, respectively) compared with initial rates in SM and GSM, with FGSM showing the highest HMGR inhibition activity (3.65 times higher than GSM at 0 h).

kosfa-39-5-725-g4
Fig. 4. (A) Antioxidant capacities and (B) HMGR inhibition activity of FGSM. The results are presented as the mean±SD (n=3). Different letters indicate statistically significant differences among the different groups (p<0.05). FGSM, fermented GSM (GOS-enriched skim milk). HMGR, 3-hydroxy-3-methylglutaryl-CoA reductase.
Download Original Figure
Profiling of featured peptide in FGSM

A featured peptide analysis of FGSM was performed by direct MALDI-TOF/MS/MS in the m/z range from 700 to 3,500 Da. As shown in Table 4 for peptide profiling from FGSM, thirty-nine peptide fragments were identified in FGSM. Most peptides derived from β-casein as well as αs1-casein, αs2-casein, and κ-casein. A total of thirty-one peptides originating from β-casein were identified, and C-terminal β-casein fragments (f199–209, f197–209, f195–209, f194–209, and f193–209) were identified in FGSM. In addition, β-casein-derived peptides f112–119, f173–182, f176–187, f78–93, f104–119, and f101–119 were only observed in FGSM. Five peptides originated from αs1-casein were identified. N-terminal αs1-casein fragments (f1–8, f1–9, and f1–17), along with a novel peptide fragment (f179–192) were identified. In the case of αs2-casein, only one peptide fragment (f101–114) was identified. Additionally, two peptides originating from κ-casein were identified, one of which, peptide κ-casein f54–60, was found only in FGSM.

Table 4. Peptide profiling of fermented GOS-enriched skim milk (FGSM)
m/z Position Sequence References
αS1-Casein
 1012 1–8 RPKHPIKH Pisanu et al. (2015)
 1140 1–9 RPKHPIKHQ Albenzio et al. (2017)
 1219 25–35 VAPFPEVFGKE Padghan et al. (2017)
 1505 179–192 FSDIPNPIGSENSE
 1991 1–17 RPKHPIKHQGLPQEVLN Wu et al. (2013)
αS2-Casein
 1650 101–114 QGPIVLNPWDQVKR Pisanu et al. (2015)
β-Casein
 826 199–206 GPVRGPFP Zhao et al. (2016)
 976 112–119 PKYPVEPF
 1001 60–68 YPFPGPIPN Bottari et al. (2017)
 1057 85–93 PPFLQPEVM Oh et al. (2017)
 1100 59–68 VYPFPGPIPN Eisele et al. (2013)
 1126 173–182 VPQKAVPYPQ
 1151 145–154 HQPHQPLPPT Fialho et al. (2018)
 1151 199–209 GPVRGPFPIIV Rodriguez-Figueroa et al. (2012)
 1157 132–141 NLHLPLPLLQ Sommella et al. (2016)
 1265 198–209 LGPVRGPFPIIV Ha et al. (2015)
 1282 144–154 MHQPHQPLPPT Chenoll et al. (2016)
 1351 109–119 MPFPKYPVEPF Padghan et al. (2017)
 1364 197–209 VLGPVRGPFPIIV Ha et al. (2015)
 1382 145–156 HQPHQPLPPTVM Ul Haq et al. (2015)
 1393 194–206 QEPVLGPVRGPFP Villegas et al. (2014)
 1414 176–187 KAVPYPQRDMPI
 1431 132–143 NLHLPLPLLQSW Padghan et al. (2017)
 1452 81–93 PVVVPPFLQPEVM Xue et al. (2018)
 1469 143–154 WMHQPHQPLPPT Oh et al. (2016)
 1481 108–119 EMPFPKYPVEPF Thomas et al. (2016)
 1513 144–156 MHQPHQPLPPTVM Cossais et al. (2017)
 1556 193–206 YQEPVLGPVRGPFP Ha et al. (2015)
 1718 194–209 QEPVLGPVRGPFPIIV Ha et al. (2015)
 1782 78–93 TQTPVVVPPFLQPEVM
 1851 145–160 HQPHQPLPPTVMFPPQ Tellez et al. (2010)
 1874 105–119 KHKEMPFPKYPVEPF Kalyankar et al. (2013)
 1881 193–209 YQEPVLGPVRGPFPIIV Eisele et al. (2013)
 1971 104–119 PKHKEMPFPKYPVEPF
 1982 144–160 MHQPHQPLPPTVMFPPQ Tapal et al. (2016)
 2042 103–119 APKHKEMPFPKYPVEPF Mansor et al. (2013)
 2244 101–119 AMAPKHKEMPFPKYPVEPF
κ-Casein
 1329 75–85 ARHPHPHLSFM Qian et al. (2011)
 1458 54–65 QFLPYPYYAKPA

GOS, galacto-oligosaccharides; FGSM, fermented GSM (GOS-enriched skim milk).

Download Excel Table

Discussion

Several studies have reported that Bifidobacterium spp. is capable to metabolize a number of carbohydrates (O’Connell Motherway et al., 2013; Schell et al., 2002; Ventura et al., 2007) and over 50 different kinds of carbohydrases originated by bifidobacteria have been reported (O’Connell Motherway et al., 2013; Pokusaeva et al., 2011; van den Broek et al., 2008). In order to metabolize GOS, bacteria transport and then metabolize galactose, using specific glycosyl hydrolases, in central metabolic pathways (Garrido et al., 2013). In vitro, several intestinal bacteria, including bifidobacteria, have been shown to utilize GOS, and fecal bifidobacterial numbers have occasionally been found to increase after GOS consumption (Alander et al., 2001; Ito et al., 1993).

In the present study, we evaluated the prebiotic effect of GOS by analyzing its usage by five selected Bifidobacterium strains (5R08, 5R10, 3B13, 1R09, and BB12), finding that the five selected Bifidobacterium strains utilized all tested GOS (6-galactobiose, allolactose, 4-galactobiose, 6-galactosyllactose, and 3-galactosylglucose) during incubation. However, total 6-galactosyllactose increased after the end of incubations performed by strain BB12. This observation suggests that BB12 possesses different uptake systems for the utilization of GOS. These results indicated that Bifidobacterium strains were capable of metabolizing GOS during the incubation and demonstrated the potential of GOS as a prebiotic substitute.

Based on the verification of GOS’s prebiotic effects, we produced FGSM with the potentially-probiotic strain 4B15. Subsequently, we measured the fermentation characteristics of GSM, including growth kinetics and pH, during fermentation. FGSM had a lower pH than FSM at the end of fermentation, with 4B15 growing better in FGSM than in FSM by an order of magnitude.

We also analyzed the GOS content of FGSM after 24 h of fermentation. Although the total GOS contents of FGSM decreased, the decrease was comparatively minor. Only 9.83% of the total available GOS was metabolized during the FGSM fermentation. This indicated that FGSM has not only active Lactobacillus, which has potential bioactivity, but also substantial amounts of beneficial prebiotic GOS. GOS are excellent food additives that improve health benefits and support the growth of health-promoting microbiota in the gut environments (Garrido et al., 2013). They have reported to have a variety of properties benefiting health, contributing to intestinal barrier function improvement and stool improvement as well as, carcinogenesis, allergy alleviation and weight management (Lamsal, 2012).

In our experiments, we evaluated the enhanced antioxidant activity of the fermented product with or without GOS during fermentation. After 24 h of fermentation, GSM showed higher antioxidant activity than SM in three kinds of bioassay results including DPPH radical scavenging activity, ABTS radical scavenging activity, and FRAP values. Downregulation of cholesterol is related to the reduction of HMGR, as active compounds restrict synthesis of cholesterol in the liver by controlling critical enzymes (Crowell, 1999; Ghasemi and Taherpour, 2015). One important mechanism involves oligosaccharides diminishing blood cholesterol levels by binding bile acids in the intestines, thereby regulating lipid absorption, and increasing cholesterol removing and synthesis of new bile acid in the liver (Ghasemi and Taherpour, 2015; Ooi and Liong, 2010). Additionally, cholesterol metabolism is associated with synthesis of bile salt from cholesterol in the liver, and with restriction of the enzyme CYP7A1 (Fava et al., 2006; Saha and Reimer, 2014). In the present study, the HMGR inhibition rate of GSM was about 3 times higher than the HMGR inhibition rate of SM after 24 h of fermentation. These results corresponded with the results of the DPPH, ABTS, and FRAP assays in this study, and demonstrated a connection between antioxidant activity and HMGR inhibition.

Milk contains important proteins including casein and whey protein such as α-lactalbumin, β-lactoglobulin, and immunoglobulins. Milk proteins perform their biological activities not only directly, but also when processed through metabolism into various peptide forms. Although their biological activities vary, the majority of these proteins affect the functionality of the immune system in some way (Ebringer et al., 2008). Casein is processed into various bioactive peptides through reaction with proteolytic enzymes (Ebringer et al., 2008; Korhonen and Pihlanto, 2006). These bioactive peptides have different effects on the cardiovascular, digestive, and nervous systems (Ebringer et al., 2008; Korhonen and Pihlanto, 2006). Among them, featured oligopeptides derived from α- and β-caseins such as casomorphines, lactorphines, and casokinines are reconstructed from milk by metabolizing proteins from lactic acid bacteria (Ebringer et al., 2008; Oh et al., 2016). Peptides created by this reaction have two or more biological activities and include small peptides such as Val-Pro-Pro and Ile-Pro-Pro which have hypotensive effects (Ebringer et al., 2008; Huth et al., 2006; Seppo et al., 2003). In addition, some peptides originating from β-lactoglobulin, such as the peptide Ile-Ile-Ala-Glu-Lys, exert hypocholesterolemic effects (Ebringer et al., 2008; Nagaoka et al., 2001). In the current study, the FGSM produced with strain 4B15 showed improved antioxidant activity and HMGR inhibition. The enhancement of antioxidant activities and HMGR inhibition in FGSM can be attributed to the generation of peptides by 4B15 during fermentation step. Peptides originated from the fermentation of milk have been reported to have immunostimulatory, antitumor, antimicrobial, antihypertensive, and antioxidative activities, as well as ACE inhibitory activity (Ebringer et al., 2008; Miguel et al., 2006; Oh et al., 2016). Among the identified thirty-nine peptide fragments, six β-casein peptide fragments (f112–119, f173–182, f176–187, f78–93, f104–119, and f101–119), one αs1-casein peptide fragment (f179–192), and one κ-casein peptide fragment (f54–60) were only observed in FGSM.

The peptides specifically released from GSM after fermentation by 4B15 have been reported to have various bioactivities such as antimicrobial, ACE inhibitory, antioxidant, anti-cancer effects (Davis et al., 2011; Eisele et al., 2013; Pisanu et al., 2015; Tapal et al., 2016; Villegas et al., 2014). The newly isolated peptides in this study, FSDIPNPIGSENSE, PKYPVEPF, VPQKAVPYPQ, KAVPYPQRDMPI, TQTPVVVPPFLQPEVM and PKHKEMPFPKYPVEPF are expected to have health promoting effects, since the selected strains, 4B15 have been shown to enhance the anti-oxidation, anti-inflammation and cholesterol lowering, respectively (Oh et al., 2017; Oh et al., 2018). However, further studies are needed to fully understand their bioactivities.

In conclusion, we investigated the prebiotic potential of GSM. First, we evaluated the prebiotic effect of GSM through analysis of its utilization by Bifidobacterium strains (5R08, 5R10, 1R09, 3B13, and BB12) during incubation. From the results, we confirmed that GOS can be utilized by Bifidobacterium strains, and we determined the prebiotic effect of GSM. Second, we evaluated the fermentation characteristics and antioxidant capacities of GSM after fermentation with 4B15, a strain with probiotic potential. We confirmed that GSM stimulated the growth of 4B15, but was not completely consumed during fermentation, and that some remained in FGSM. We also confirmed that the antioxidant activity and HMGR inhibition rate of FGSM produced with 4B15 increased relative to that of the control after 24 h of fermentation, and that this was caused by metabolizing functional substrates such as organic acids and peptides. Finally, we found eight novel peptide fragments possessing potential bioactivities. In conclusion, we found that GSM can be used for potentiating prebiotics, and it enhances functional bioactivities through interaction with probiotics. Therefore, our results will contribute to the development of new dairy products with beneficial functionality. GSM may be applied not only in various dairy foods but also in the food industry. Adding to this, our findings contribute on the development of a new insight for synbiotic fermented milk.

Notes

Conflict of Interest

The authors declare no potential conflict of interest.

Acknowledgements

This research was supported by the High Value-Added Food Technology Development Program of the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (iPET), the Ministry for Food, Agriculture, Forestry and Fisheries of Korea (117069-03-3-SB010) and the National Research Foundation of Korea (NRF) funded by the Ministry of Science, Information and Communications Technology (ICT) and Future Planning (2016M3C1B5907057).

Notes

Author Contributions

Conceptualization: Oh NS, Kim K, Oh S, Kim Y. Data curation: Oh NS, Kim K, Oh S, Kim Y. Formal analysis: Oh NS, Kim K, Oh S, Kim Y. Methodology: Oh NS, Kim K, Oh S, Kim Y. Software: Oh NS, Kim K, Oh S, Kim Y. Validation: Oh NS, Kim K, Oh S, Kim Y. Investigation: Oh NS, Kim K, Oh S, Kim Y. Writing - original draft: Oh NS, Kim K, Oh S, Kim Y. Writing - review & editing: Oh NS, Kim K, Oh S, Kim Y.

Notes

Ethics Approval

This article does not require IRB/IACUC approval because there are no human and animal participants.

References

1.

Alander M, Matto J, Kneifel W, Johansson M, Kogler B, Crittenden R, Mattila-Sandholm T, Saarela M. 2001; Effect of galacto-oligosaccharide supplementation on human faecal microflora and on survival and persistence of Bifidobacterium lactis BB-12 in the gastrointestinal tract. Int Dairy J. 11:817-825

2.

Albenzio M, Santillo A, Caroprese M, Della M, alva A, Marino R. 2017; Bioactive peptides in animal food products. Foods. 6:35

3.

Andersen JM, Barrangou R, Abou H, achem M, Lahtinen S, Goh YJ, Svensson B, Klaenhammer TR. 2011; Transcriptional and functional analysis of galactooligosaccharide uptake by lacs in Lactobacillus acidophilus. Proc Natl Acad Sci USA. 108:17785-17790

4.

Bottari B, Quartieri A, Prandi B, Raimondi S, Leonardi A, Rossi M, Ulrici A, Gatti M, Sforza S, Nocetti M, Amaretti A. 2017; Characterization of the peptide fraction from digested parmigiano reggiano cheese and its effect on growth of lactobacilli and bifidobacteria. Int J Food Microbiol. 255:32-41

5.

Chenoll E, Casinos B, Bataller E, Buesa J, Ramon D, Genoves S, Fabrega J, Rivero Urgell M, Moreno Munoz JA. 2016; Identification of a peptide produced by Bifidobacterium longum CECT 7210 with antirotaviral activity. Front Microbiol. 7:655

6.

Cossais F, Clawin-Radecker I, Lorenzen PC, Klempt M. 2017; Tryptic β-casein hydrolysate modulates enteric nervous system development in primary culture. J Dairy Sci. 100:3396-3403

7.

Crowell PL. 1999; Prevention and therapy of cancer by dietary monoterpenes. J Nutr. 129:775S-778S

8.

Davis LM, Martinez I, Walter J, Goin C, Hutkins RW. 2011; Barcoded pyrosequencing reveals that consumption of galactooligosaccharides results in a highly specific bifidogenic response in humans. PLOS ONE. 6:e25200

9.

Ebringer L, Ferencik M, Krajcovic J. 2008; Beneficial health effects of milk and fermented dairy products. Folia Microbiol. 53:378-394

10.

Eisele T, Stressler T, Kranz B, Fischer L. 2013; Bioactive peptides generated in an enzyme membrane reactor using Bacillus lentus alkaline peptidase. Eur Food Res Technol. 236:483-490

11.

Fava F, Lovegrove JA, Gitau R, Jackson KG, Tuohy KM. 2006; The gut microbiota and lipid metabolism: Implications for human health and coronary heart disease. Curr Med Chem. 13:3005-3021

12.

Fialho TL, Carrijo LC, Magalhaes Junior MJ, Baracat-Pereira MC, Piccoli RH, de Abreu LR. 2018; Extraction and identification of antimicrobial peptides from the canastra artisanal minas cheese. Food Res Int. 107:406-413

13.

Forestier C, de Champs C, Vatoux C, Joly B. 2000; Probiotic activities of Lactobacillus casei rhamnosus: In vitro adherence to intestinal cells and antimicrobial properties. Res Microbiol. 152:167-173

14.

Fuller R, Gibson GR. 1998; Probiotics and prebiotics: Microflora management for improved gut health. Clin Microbiol Infect. 4:477-480

15.

Garrido D, Ruiz-Moyano S, Jimenez-Espinoza R, Eom HJ, Block DE, Mills DA. 2013; Utilization of galactooligosaccharides by Bifidobacterium longum subsp. infantis isolates. Food Microbiol. 33:262-270

16.

Ghasemi HA, Taherpour K. 2015; Comparison of broiler performance, blood biochemistry, hematology and immune response when feed diets were supplemented with ginger essential oils or mannan-oligosaccharide. Iran J Vet Med. 9:195-205.

17.

Gibson GR, Roberfroid MB. 1995; Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J Nutr. 125:1401-1412

18.

Gobinath D, Prapulla SG. 2014; Permeabilized probiotic Lactobacillus plantarum as a source of β-galactosidase for the synthesis of prebiotic galactooligosaccharides. Biotechnol Lett. 36:153-157

19.

Gopal PK, Sullivan PA, Smart JB. 2001; Utilisation of galacto-oligosaccharides as selective substrates for growth by lactic acid bacteria including Bifidobacterium lactis DR10 and Lactobacillus rhamnosus DR20. Int Dairy J. 11:19-25

20.

Ha GE, Chang OK, Jo SM, Han GS, Park BY, Ham JS, Jeong SG. 2015; Identification of antihypertensive peptides derived from low molecular weight casein hydrolysates generated during fermentation by Bifidobacterium longum KACC 91563. Korean J Food Sci Anim Resour. 35:738-747

21.

Huth P, DiRienzo DB, Miller GD. 2006; Major scientific advances with dairy foods in nutrition and health. J Dairy Sci. 89:1207-1221

22.

Intanon M, Arreola SL, Pham NH, Kneifel W, Haltrich D, Nguyen TH. 2014; Nature and biosynthesis of galacto-oligosaccharides related to oligosaccharides in human breast milk. FEMS Microbiol Lett. 353:89-97

23.

Ito M, Deguchi Y, Matsumoto K, Kimura M, Onodera N, Yajima T. 1993; Influence of galactooligosaccharides on the human fecal microflora. J Nutr Sci Vitaminol. 39:635-640

24.

Kalyankar P, Zhu Y, O’cuinn G, Fitzgerald RJ. 2013; Investigation of the substrate specificity of glutamyl endopeptidase using purified bovine β-casein and synthetic peptides. J Agric Food Chem. 61:3193-3204

25.

Korhonen H, Pihlanto A. 2006; Bioactive peptides: Production and functionality. Int Dairy J. 16:945-960

26.

Lamsal BP. 2012; Production, health aspects and potential food uses of dairy prebiotic galactooligosaccharides. J Sci Food Agric. 92:2020-2028

27.

Macfarlane GT, Steed H, Macfarlane S. 2008; Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J Appl Microbiol. 104:305-344.

28.

Macfarlane S, Macfarlane GT, Cummings JH. 2006; Prebiotics in the gastrointestinal tract. Aliment Pharmacol Ther. 24:701-714

29.

Mansor R, Mullen W, Albalat A, Zerefos P, Mischak H, Barrett DC, Biggs A, Eckersall PD. 2013; A peptidomic approach to biomarker discovery for bovine mastitis. J Proteomics. 85:89-98

30.

Miguel M, Recio I, Ramos M, Delgado MA, Aleixandre MA. 2006; Antihypertensive effect of peptides obtained from Enterococcus faecalis-fermented milk in rats. J Dairy Sci. 89:3352-3359

31.

Nagaoka S, Futamura Y, Miwa K, Awano T, Yamauchi K, Kanamaru Y, Tadashi K, Kuwata T. 2001; Identification of novel hypocholesterolemic peptides derived from bovine milk β-lactoglobulin. Biochem Biophys Res Commun. 281:11-17

32.

O’connell Motherway M, Kinsella M, Fitzgerald GF, Van Sinderen D. 2013; Transcriptional and functional characterization of genetic elements involved in galacto-oligosaccharide utilization by Bifidobacterium breve UCC2003. Microb Biotechnol. 6:67-79

33.

Oh NS, Joung JY, Lee JY, Kim Y, Kim SH. 2017; Enhancement of antioxidative and intestinal anti-inflammatory activities of glycated milk casein after fermentation with Lactobacillus rhamnosus 4B15. J Agric Food Chem. 65:4744-4754

34.

Oh NS, Joung JY, Lee JY, Kim Y. 2018; Probiotic and anti-inflammatory potential of Lactobacillus rhamnosus 4B15 and Lactobacillus gasseri 4M13 isolated from infant feces. PLOS ONE. 13:e0192021

35.

Oh NS, Kwon HS, Lee HA, Joung JY, Lee JY, Lee KB, Shin YK, Baick SC, Park MR, Kim Y, Lee KW, Kim SH. 2014; Preventive effect of fermented maillard reaction products from milk proteins in cardiovascular health. J Dairy Sci. 97:3300-3313

36.

Oh NS, Lee HA, Lee JY, Joung JY, Lee KB, Kim Y, Lee KW, Kim SH. 2013; The dual effects of Maillard reaction and enzymatic hydrolysis on the antioxidant activity of milk proteins. J Dairy Sci. 96:4899-4911

37.

Oh NS, Lee JY, Oh S, Joung JY, Kim SG, Shin YK, Lee KW, Kim SH, Kim Y. 2016; Improved functionality of fermented milk is mediated by the synbiotic interaction between Cudrania tricuspidata leaf extract and Lactobacillus gasseri strains. Appl Microbiol Biotechnol. 100:5919-5932

38.

Olano-Martin E, Williams MR, Gibson GR, Rastall RA. 2003; Pectins and pectic-oligosaccharides inhibit Escherichia coli O157:H7 shiga toxin as directed towards the human colonic cell line ht29. FEMS Microbiol Lett. 218:101-105

39.

Ooi LG, Liong MT. 2010; Cholesterol-lowering effects of probiotics and prebiotics: A review of in vivo and in vitro findings. Int J Mol Sci. 11:2499-2522

40.

Padghan P, Mann B, Sharma R, Bajaj R, Saini P. 2017; Production of angiotensin-i-converting-enzyme-inhibitory peptides in fermented milks (lassi) fermented by Lactobacillus acidophillus with consideration of incubation period and simmering treatment. Int J Pept Res Ther. 23:69-79

41.

Pisanu S, Pagnozzi D, Pes M, Pirisi A, Roggio T, Uzzau S, Addis MF. 2015; Differences in the peptide profile of raw and pasteurised ovine milk cheese and implications for its bioactive potential. Int Dairy J. 42:26-33

42.

Pokusaeva K, Fitzgerald GF, van Sinderen D. 2011; Carbohydrate metabolism in bifidobacteria. Genes Nutr. 6:285-306

43.

Qian B, Xing M, Cui L, Deng Y, Xu Y, Huang M, Zhang S. 2011; Antioxidant, antihypertensive, and immunomodulatory activities of peptide fractions from fermented skim milk with Lactobacillus delbrueckii ssp. bulgaricus LB340. J Dairy Res. 78:72-79

44.

Rabiu BA, Jay AJ, Gibson GR, Rastall RA. 2001; Synthesis and fermentation properties of novel galacto-oligosaccharides by β-galactosidases from Bifidobacterium species. Appl Environ Microbiol. 67:2526-2530

45.

Rodriguez-Figueroa JC, Gonzalez-Cordova AF, Torres-Llanez MJ, Garcia HS, Vallejo-Cordoba B. 2012; Novel angiotensin i-converting enzyme inhibitory peptides produced in fermented milk by specific wild Lactococcus lactis strains. J Dairy Sci. 95:5536-5543

46.

Saha DC, Reimer RA. 2014; Long-term intake of a high prebiotic fiber diet but not high protein reduces metabolic risk after a high fat challenge and uniquely alters gut microbiota and hepatic gene expression. Nutr Res. 34:789-796

47.

Sangwan V, Tomar SK, Singh RR, Singh AK, Ali B. 2011; Galactooligosaccharides: Novel components of designer foods. J Food Sci. 76:R103-R111

48.

Schell MA, Karmirantzou M, Snel B, Vilanova D, Berger B, Pessi G, Zwahlen MC, Desiere F, Bork P, Delley M, Pridmore RD, Arigoni F. 2002; The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci USA. 99:14422-14427

49.

Seppo L, Jauhiainen T, Poussa T, Korpela R. 2003; A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects. Am J Clin Nutr. 77:326-330

50.

Smart JB, Pillidge CJ, Garman JH. 1993; Growth of lactic acid bacteria and bifidobacteria on lactose and lactose-related mono-, di- and trisaccharides and correlation with distribution of β-galactosidase and phospho-β-galactosidase. J Dairy Res. 60:557-568

51.

Sommella E, Pepe G, Ventre G, Pagano F, Conte GM, Ostacolo C, Manfra M, Tenore GC, Russo M, Novellino E, Campiglia C. 2016; Detailed peptide profiling of "scotta": From a dairy waste to a source of potential health-promoting compounds. Dairy Sci Technol. 96:763-771

52.

Tapal A, Vegarud GE, Sreedhara A, Hegde P, Inamdar S, Tiku PK. 2016; In vitro human gastro-intestinal enzyme digestibility of globulin isolate from oil palm (Elaeis guineensis var. tenera) kernel meal and the bioactivity of the digest. RSC Adv. 6:20219-20229

53.

Tellez A, Corredig M, Brovko LY, Griffiths MW. 2010; Characterization of immune-active peptides obtained from milk fermented by Lactobacillus helveticus. J Dairy Res. 77:129-136

54.

Thomas FC, Mullen W, Tassi R, Ramirez-Torres A, Mudaliar M, Mcneilly TN, Zadoks RN, Burchmore R, David Eckersall P. 2016; Mastitomics, the integrated omics of bovine milk in an experimental model of Streptococcus uberis mastitis: 1. High abundance proteins, acute phase proteins and peptidomics. Mol Biosyst. 12:2735-2747

55.

Tzortzis G, Goulas AK, Baillon ML, Gibson GR, Rastall RA. 2004; In vitro evaluation of the fermentation properties of galactooligosaccharides synthesised by β-galactosidase from Lactobacillus reuteri. Appl Microbiol Biotechnol. 64:106-111

56.

Ul Haq MR, Kapila R, Kapila S. 2015; Release of β-casomorphin-7/5 during simulated gastrointestinal digestion of milk β-casein variants from indian crossbred cattle (Karan Fries). Food Chem. 168:70-79

57.

Van Den Broek LA, Hinz SW, Beldman G, Vincken JP, Voragen AG. 2008; Bifidobacterium carbohydrases-their role in breakdown and synthesis of (potential) prebiotics. Mol Nutr Food Res. 52:146-163

58.

Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, Van Sinderen D. 2007; Genomics of actinobacteria: Tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev. 71:495-548

59.

Villegas JM, Picariello G, Mamone G, Turbay MBE, De Giori GS, Hebert EM. 2014; Milk-derived angiotensin-i-converting enzymeinhibitory peptides generated by Lactobacillus delbrueckii subsp. lactis CRL 581. Peptidomics. 1:22-29

60.

Wu S, Qi W, Li T, Lu D, Su R, He Z. 2013; Simultaneous production of multi-functional peptides by pancreatic hydrolysis of bovine casein in an enzymatic membrane reactor via combinational chromatography. Food Chem. 141:2944-2951

61.

Xue L, Wang X, Hu Z, Wu Z, Wang L, Wang H, Yang M. 2018; Identification and characterization of an angiotensin-converting enzyme inhibitory peptide derived from bovine casein. Peptides. 99:161-168

62.

Yanahira S, Kobayashi T, Suguri T, Nakakoshi M, Miura S, Ishikawa H, Nakajima I. 1995; Formation of oligosaccharides from lactose by Bacillus circulans β-galactosidase. Biosci Biotechnol Biochem. 59:1021-1026

63.

Zhao CJ, Schieber A, Ganzle MG. 2016; Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations: A review. Food Res Int. 89:39-47